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Currently, the best performing micropolarizer array is the
2 × 4 pattern introduced by LeMaster and Hirakawa. In
this Letter, we extend the available set of patterns with the
aim of improving reconstruction quality by leveraging the
Fourier domain and designing information carriers that
yield optimal bandwidth. First, the family of 2 × L pat-
terns widens the optimization space of the 2×4 pattern by
facilitating variable allocation of bandwidth for channels
surrounding polarization and intensity carriers. Second,
the 2 × 2 × N patterns present an intriguing option for
use within a hybrid spatiotemporal modulation scheme,
where the multiple temporal measurements enable maxi-
mum theoretical spatial resolution of reconstructed Stokes
parameters. © 2017 Optical Society of America
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Recent improvements in manufacturing have made the class of
division of focal plane (DoFP) polarimeters [1] more competi-
tive with other polarimeter classes. The first successful micropo-
larizer array (MPA) was introduced by Chun [2] in 1994 and has
become colloquially known as the microgrid polarimeter. De-
spite its prevalence, the engineering considerations at the time
did not include the now more widely acknowledged significance
of maximizing bandwidth within the Fourier domain. These
principles were pioneered for polarimeters by Tyo, LaCasse, and
colleagues [3–5], while the first attempt to build upon the con-
ventional MPA was undertaken by LeMaster and Hirakawa [6].
They demonstrated improved reconstruction quality in both s0
and degree of linear polarization (DoLP) when using their 2×4
MPA rather than the conventional 2 × 2 MPA. In this Letter,
we generalize the interaction of MPA design in terms of the
bandwidth provided and the reconstruction quality achieved.

The Stokes vector [1],

S = [ s0 s1 s2 s3 ]T

= [ IH + IV IH − IV I+45 − I−45 IR − IL ]T, (1)

is a common way to describe the polarization of incoherent light.
The latter three parameters represent differential irradiance mea-
surements and are constrained to lie inside the Poincaré sphere,

s0 ⩾ √s21 + s22 + s23 . To measure Stokes parameters, indirect
measurements are made by passing light of an unknown po-
larization state, S, through a series of predetermined analyzing
polarization states, An. By grouping N measurements together,

I = [ I1 ⋯ IN ]T

= [ AT
1 S ⋯ AT

NS ]T + ~n = WS + ~n, (2)

the data can then be manipulated to reveal the unknown state’s
Stokes parameters by calculating the pseudo-inverse, W+, and
applying the Data Reduction Method (DRM),

̂S = W+I = W+WS + W+~n, (3)
where ~n represents additive detector noise.

The conventional MPA aligns polarizers at 0∘, +45∘, 90∘

and −45∘ in a 2 × 2 pattern that can be seen in Fig. 1A, and
the (m, n)th pixel has the following analyzing vector,

Am,n = 1
4

⎡
⎢
⎢
⎣

2

cos(mπ) + cos(nπ)
cos(mπ) − cos(nπ)

⎤
⎥
⎥
⎦

, (4)

where a3 = 0 and is omitted for brevity. Because each of the
four pixels observe a slightly different S, applying DRM directly
onto intensities in Eq. (1) leads to instantaneous field-of-view
(IFOV) errors [7]. Tyo [3] and LaCasse [4, 5] showed that
by transforming to the Fourier domain of the raw microgrid
image, it is possible to extract the polarization information with
better aliasing performance. Extending their work, LeMaster
and Hirakawa [6] proposed a 2 × 4 MPA shown in Fig. 1B. A
permutation of that pattern belongs to the family,

Am,n = 1
2

⎡
⎢
⎢
⎣

1

cos(amπ) cos(bnπ)
sin(amπ) cos(bnπ)

⎤
⎥
⎥
⎦

, (5)

where a and b are the carrier frequencies in x and y, respectively,
in cycles per pixel. LeMaster’s MPA satisfies Eq. (5) with a =
1/2 and b = 1. Two additional members shown in Figs. 1C
and 1D will be discussed in greater detail.

Since DoFP polarimeters rely on periodically oriented mi-
cropolarizers, it is appropriate to treat such systems within the
Fourier domain. To examine the channel structure, we adapt
ourQ formalism [8] to Stokes polarimeters. We expand In from
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Fig. 1. MPAs. Top row: (A) Conventional 2 × 2, (B) LeMaster’s 2 × 4, (C) This work’s 2 × 3, (D) This work’s 2 × 7, (E) This work’s 2 × 2 × 2.
Bottom row: Fourier domains with •/× indicating channel centers for filled and empty channels, respectively, as contained within Ã of Eq. (8) for
2 × L MPAs; solid lines outline the allocated channel bandwidths, while dotted lines outline the allocated s0 bandwidth of the conventional MPA.

Table 1. Notable Micropolarizer Array Patternsa

Origin Size a b N CN σ20,1,2,3 QT Q+

Chun [2] 2 × 2 – – 1
√
2 1, 4, 4, ⌀ ⎡⎢

⎣

⎤⎥
⎦

⎡⎢
⎣

⎤⎥
⎦

LeMaster [6] 2 × 4 1/2 1 1
√
2 1, 4, 4, ⌀

⎡⎢
⎣

⎤⎥
⎦

⎡⎢
⎣

⎤⎥
⎦

This Work 2 × 3 2/3 1 1
√
2 1, 4, 4, ⌀

This Work 2 × 7 4/7 1 1
√
2 1, 4, 4, ⌀

This Work 2 × 2 × N 1 1
1

√
1 1, 4, ⌀, ⌀

⎡⎢
⎣

⎤⎥
⎦

⎡⎢
⎣

⎤⎥
⎦

2
√
2 1

2 , 4, 4, ⌀
3

√
3 1

3 , 4, 4, 4
aCN is the condition number of the unit-cell’s W. σ20,1,2,3 are the noise variances for each Stokes parameter from Q; their sum is EWV (⌀ is unreconstructable).
The circles represent the polar form of the coefficients—the direction of the radius line contains the phase information as: right= +1, up= +j, left= −1, down= −j.
Empty circles indicate that a given Stokes parameter is not contained within a given channel; a vertical set of circles in QT and Q+ denotes an empty channel.

Eq. (2) into a sampled 2D scene, I(x, y). The Fourier transform,
̃I(ξ, η), can be divided into a set of channels, ℱ{C}, which are

related to the four Stokes parameters through Q,

ℱ{C} = Qℱ{S} = [ qξ,η;s0 qξ,η;s1 qξ,η;s2 qξ,η;s3 ]ℱ{S},
(6)

where qξ,η;si is the channel structure for each Stokes parameter.
Their concatenation maps information into the set of carriers
afforded by a given MPA design. By properly keeping track of
this mapping and inverting the process, we can reconstruct S,

̂S = ℱ−1 {Q+ℱ{C}} , (7)
where Q+ is the pseduo-inverse. As was shown in our original
work, the Frequency Phase Matrix can readily reveal the Fourier
transform of Eq. (5) and thereby describe the corresponding
channel structure of every member of the family,

Ãm,n =
⎡
⎢
⎢
⎣

1
2 δ(ξ, η)

1
8 [+δ(ξ − a

2 , η ± b
2 ) + δ(ξ + a

2 , η ± b
2 )]

j
8 [−δ(ξ − a

2 , η ± b
2 ) + δ(ξ + a

2 , η ± b
2 )]

⎤
⎥
⎥
⎦

. (8)

Eq. (8) depicts the channel structure with nine channels cen-
tered at ({−a/2, 0, +a/2}, {−b/2, 0, +b/2}). The resulting
measurement and its reconstruction can be performed with Q
and its inverse shown in Table 1. Because the s0 channel is

at baseband, while s1 and s2 have exactly two carriers—one
in x and one in y—it follows that all MPAs have four empty
channels, while utilizing the remaining five.

Minimizing equally weighted variance (EWV) is correlated
with making channels more independent [8]. Intuitively, this
makes sense—if you want to retain noise resilience, mix informa-
tion less. Thus, if noise resilience was the primary requirement
for an MPA, the “optimal” configuration would set a or b to
zero, thereby removing either the x- or the y-carrier, respectively.
That would result in a 1 × L MPA with three channels, and
applying the fact that each sinusoidal modulation doubles the
variance [8], the EWV for suchMPAs would equal 1+2+2 = 5.
However, to maximize information bandwidth, a “non-optimal”
modulation is more interesting. MPAs that have both x and y
carriers sacrifice the ease of unmixing in favor of a significant
increase in the separation of the channels carrying s0 and s1/s2
information. This trade-off carries the penalty of increasing
EWV to 1 + 4 + 4 = 9, but the higher bandwidth of each
channel leads to a more accurate reconstruction overall [5]: if
the scene is very low bandwidth, the reconstruction is sufficient
with channel centers; as the bandwidth increases, the recon-
struction benefits from inclusion of higher frequencies. More
generally, these considerations represent an overall need for a
balanced approach to noise, bandwidth and system error [9].
Nonetheless, 1 × L MPAs may be interesting in special cases—
such as when the data is guaranteed to have significantly higher
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Table 2. MPA parametrization
K ℓ ⩾ 2 L a b σ20,1,2,3 CN

1 even 2ℓ ℓ−1−2p
ℓ 0 1, 2, 2, ⌀

√
2

odd ℓ
2 even 2ℓ ℓ−1−2p

ℓ 1 1, 4, 4, ⌀
odd ℓ

frequencies in one of the spatial dimensions, or in push-broom
systems. Table 2 parametrizes 1 × L and 2 × L families. The
additional parameter, p = {0, 1, … , ⌈ℓ/2⌉ − 1}, is an integer
that allows discrete selection of carrier frequency between 0 and
(ℓ − 1)/ℓ. For example, the 2× 7 MPA can have p = {0, 1, 2},
which corresponds to a = {6/7, 4/7, 2/7}. For the data in
Fig. 2, MPAs with a ∼ 0.6 proved most interesting. Hence the
choice of p = 1 and a = 4/7 for the 2 × 7 MPA in Fig. 1D.

It is possible to take a and b to the limit of both being equal
to unity, which can be seen in Fig. 1E. This MPA extends the
channel centers to the outer corners, which provides maximum
possible bandwidth, but because sin(mπ) = 0 for m ∈ ℤ, this
MPA can only reconstruct s0 and s1. To obtain s2, we can add a
temporally modulated ferroelectric liquid crystal rotator, which
can be modeled as a switching half-or-zero-wave plate oriented
at θ = 22.5∘. This will effectively rotate each pixel by 45∘

between the two successive frames. To obtain s3 as well, we
can instead add a δ = 141.7∘ retarder and temporally cycle
it through three orientations, θ = {−56.2∘, −30.0∘, +46.4∘}.
These systems fit the previously introduced multi-snapshot chan-
neled polarimeter nomenclature, but here we refer to them as
2 × 2 × N MPAs for brevity. To be fair in comparisons with
other MPAs, special care is required—the exposure time needs
to be split into N parts, and each one of them needs to receive
a noise contribution with the variance scaled by 1/N .

We simulated DoFP reconstruction with data from Ground
MSPI [10] shown in Fig. 2. Since Ground MSPI is a division
of time polarimeter, its data lacks spatial artifacts. Images were
cropped to 1092× 1092 to ensure that each of the MPA’s unit-
cells were included an integer number of times. This affixed
the carriers to pixel boundaries within the Fourier domain and
alleviated the need for any subsampling. For 16 independent
instantiations of each noise level between 9dB and 36dB in
mean signal-to-noise ratio (SNR), we perform two genetic algo-
rithm optimizations: a) four parameters, {rbase, rside, εbase, εside},
defining filters to maximize DoLP accuracy; b) two parame-
ters, {rbase, εbase}, defining filters to maximize s0 accuracy. We

1

2

A B

Fig. 2. Ground MSPI data, λ = 660 nm. (A) s0. (B) DoLP.

quantify accuracy with peak signal-to-noise ratio (PSNR) [11],
which is related to mean squared error (MSE) as,

PSNR = 10log
10

(MAX2/MSE) , (9)
where MAX = 1 for normalized s0 and DoLP. The respective r
and ε parameters define the Planck-Taper envelope: unity near
the center, zero on the outside and the falloff range defined as

H(εiri ⩽ r ⩽ ri) = 1
1 + exp (−2εiri [ 1

r−εiri
+ 1

r−ri
])

. (10)

Selecting the hyperplane rbase + εbase = rside + εside = 1 as the
initial population constraint was found to produce the fastest
convergence. Figure 4 shows reconstructed and absolute er-
ror images for a single noise instantiation of the 50 that were
averaged to achieve the final accuracy results shown in Fig. 3.

For low SNRs, the MPA choice is irrelevant—the filters
around each carrier are similarly sized as the outer regions of
the Fourier domain are below the noise floor. As SNR increases,
the filters widen for all MPAs, but do so at different rates. This
rate is determined by two factors: a) the proximity of nearby
carriers; b) information channel amplitude compared to the
noise floor. It is in between these two factors that most gains
are made (between 18dB and 30dB). As SNR reaches a high
enough level, the reconstruction quality plateaus. At this point,
further widening of filters is detrimental, since high frequency
content from adjacent channels leads to crosstalk.

Overall, the 2× 2 MPA yields the worst performance, while
the 2 × 2 × 2 MPA yields the best performance. However,
there are engineering challenges associated with implementing
the required hybrid modulation, and if its addition is impracti-
cal for a given application, the 2 × L family is likely to provide
the most compelling design. Figures 3 and 4 indicate that 2×3,
2×4 and 2×7 are all competitive and offer different trade-offs
of s0 and DoLP accuracy. Of the three, the 2 × 3 provides
the best s0 accuracy and the worst DoLP accuracy, while the
2× 7 MPA outperforms LeMaster’s 2× 4 in both. Because the
filter parameters were chosen to maximize reconstruction qual-
ity, the fact that the 2 × 7 provides a better trade-off between
carrier separation and the allocated bandwidth than the 2 × 4,
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Fig. 3. Attainable reconstruction quality of MPAs in Fig. 1.
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Fig. 4. Top two rows: the inside 2 × 2 grid shows the true s0 and DoLP; the outside shows the reconstructed s0 and DoLP at SNR = 30 dB.
Bottom six rows: absolute error between reconstructed images and truth. MPA labels and ROIs are consistent with Figs. 1 and 2, respectively.

suggests that s1 and s2 channels may require less bandwidth
than the s0 channel. This is analogous to hyperspectral imaging,
where it is well established that luminance information is gener-
ally of higher spatial bandwidth than chrominance information
[12, 13]. Note that if s1 and s2 were of comparable bandwidth
and magnitude to s0, LeMaster’s 2×4 would be the best MPA to
use. Conversely, if s1 and s2 relative bandwidths were lower, the
2× 3 would fare better. When designing an MPA for represen-
tative data, current state-of-the-art manufacturing capabilities
make arbitrarily large L untenable. The likely error in polarizer
orientations would have the effect of smearing a single carrier
into a plurality of carriers along the top and bottom edges of the
Fourier domain [14]. The resulting aliasing would make recon-
struction excessively difficult, thereby negating the benefits of
using the Q formalism, while also exacerbating unit-cell locality
and the associated IFOV errors that plague conventional DRM
techniques. These constraints will diminish with time.

In this Letter, we have extended LeMaster’s 2× 4 MPA into
a family of 2×LMPAs that allow for optimal carrier placement
given the data. However, the improvement it brings is small in
comparison to the one enabled by the 2 × 2 × N MPAs.
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