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ABSTRACT
Micropolarizer arrays are occasionally used in partial Stokes, full Stokes, and Mueller matrix polarimeters. When
treating modulated polarimeters as linear systems, specific assumptions are made about the Dirac delta functional
forms generated in the channel space by micropolarizer arrays. These assumptions are 1) infinitely fine sampling
both spatially and temporally and 2) infinite array sizes. When these assumptions are lifted and the physical
channel shapes are computed, channel shapes become dependent on both the physical pixel area and shape, as
well as the array size. We show that under certain circumstances the Dirac delta function approximation is not
valid, and give some bounding terms to compute when the approximation is valid, i.e., which array and pixel sizes
must be used for the Dirac delta function approximation to hold. Additionally, we show how the physical channel
shape changes as a function of array and pixel size, for a conventional 0∘, 45∘, −45∘, 90∘ superpixel micropolarizer
array configuration.

Keywords: polarimetry, modulated polarimetry, linear systems, microanalyzer array, micropolarizer array,
polarimetric channels

1. INTRODUCTION
Recent developments in the polarimetric system community have resulted in the utilization of linear systems
theory to describe polarimetric systems in a general way.1–11 Most current use of the linear systems formalism
for polarimetric instruments involves the assumption of periodic carriers, resulting in 𝛿-functions in the channel,
or Fourier domain. This assumption works well for large micropolarizer (or microanalyzer) arrays, however for
small array sizes it breaks down. In this communication we derive the physical channel structure for rectangular
microanalyzer arrays. We show that the physical channel structure is a function of the pixel shape and size and
the array size. The physical constraints of the rectangular grid impart a sum of shifted approximate 𝛿-functions
multiplied by the Fourier transform of the pixel shape.

The article is organized as follows: In Section 2 the physical form of a single pixel is analyzed in the Fourier
(channel) domain for a pixel of arbitrary shape. In Section 3 this physical form is then combined into a finite
array which reveals the structure and demonstrates that the physical channel structure is a function of easily
manipulated parameters. Section 4 demonstrates a Stokes polarimeter example.

2. PHYSICAL DESCRIPTION
The microanalyzer array will usually adhere to the typical rectangular pixel grid focal plane array (FPA) ge-
ometry. Other pixel grid geometries, e.g. hexagonal grids, have been shown to be more efficient in terms of
bandwidth,12 however there are currently no commercially available FPAs known to the authors which offer a
hexagonal grid. In this section we derive a ideal physical model of the channel structure given the assumptions:
1) spatial integrations are disjoint, 2) Stokes analyzer parameters are constant over each micropolarizer array
element except for attenuation, 3) temporal integration is not accounted for, and 4) the pixel array is a regular
rectangular grid. The primary physical parameters which affect the channel structure are the analyzer/pixel
shape, the analyzer spatial functions, and the array size.
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ℎ(𝑥, 𝑦) =

(0, 0)

Figure 1: Arbitrary pixel shape represented by the function ℎ(𝑥, 𝑦). Notice that it is centered on (0, 0).

2.1 Single pixel
We make the assumption here that each pixel has the same shape and attenuation function, and that the each
pixel shape is compact and restricted to the pixel pitch size. This function can be represented by ℎ(𝑥, 𝑦) as
shown in Fig. 1. A single pixel on the rectangular grid can be represented by ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗) multiplied by the
sum of periodic spatial analyzer functions

1 + 𝑎1(𝑥, 𝑦) + 𝑎2(𝑥, 𝑦) + 𝑎3(𝑥, 𝑦) (1)

at the points (𝑥𝑖 , 𝑦𝑗). A single element at (𝑥𝑖 , 𝑦𝑗) is then measured as

∫
ℝ2

[𝑠0(𝑥, 𝑦) + 𝑎1(𝑥𝑖 , 𝑦𝑗)𝑠1(𝑥, 𝑦) + 𝑎2(𝑥𝑖 , 𝑦𝑗)𝑠2(𝑥, 𝑦) + 𝑎3(𝑥𝑖 , 𝑦𝑗)𝑠3(𝑥, 𝑦)]ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗)𝑑𝑥𝑑𝑦. (2)

where 𝑠0, 𝑠1, 𝑠2, 𝑠3 are the Stokes parameters under measurement.
The system description is then

∫
ℝ2

[1 + 𝑎1(𝑥𝑖 , 𝑦𝑗) + 𝑎2(𝑥𝑖 , 𝑦𝑗) + 𝑎3(𝑥𝑖 , 𝑦𝑗)]ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗)𝑑𝑥𝑑𝑦. (3)

The integration is due to detector integration (spatially, recall that we are ignoring the temporal integration
here), which implies that the physical structure in the spatial domain is approximately

ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗) + 𝑎1(𝑥𝑖 , 𝑦𝑗)ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗)

+𝑎2(𝑥𝑖 , 𝑦𝑗)ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗) + 𝑎3(𝑥𝑖 , 𝑦𝑗)ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗) (4)

Taking the 2 − 𝐷 Fourier transform of Eq. (4) results in

𝑒−2𝜋𝑖(𝑥𝑖𝜉+𝑦𝑗𝜂)𝐻(𝜉, 𝜂) [1 + 𝑎1(𝑥𝑖 , 𝑦𝑗) + 𝑎2(𝑥𝑖 , 𝑦𝑗) + 𝑎3(𝑥𝑖 , 𝑦𝑗)] (5)

where 𝑥 → 𝜉, 𝑦 → 𝜂. The 𝑎𝑖(𝑥𝑖 , 𝑦𝑗)s corresponding to the microanalyzer elements in Eq. (5) are constants with
respect to the Fourier transform, however they are samples of some periodic function(s).

3. ARRAY OF PIXELS
The assumption that ℎ(𝑥, 𝑦) is compact (in a mathematical sense) within a bounding rectangle defined by the
pixel pitch implies that we can add all of the pixels together. Formally,

∑

𝑖

∑

𝑗

[ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗) + 𝑎1(𝑥𝑖 , 𝑦𝑗)ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗)

+ 𝑎2(𝑥𝑖 , 𝑦𝑗)ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗) + 𝑎3(𝑥𝑖 , 𝑦𝑗)ℎ(𝑥 − 𝑥𝑖 , 𝑦 − 𝑦𝑗)], (6)



Figure 2: An example of sub-sum selection from a typical linear micropolarizer array. Each element type is
periodic over the array. The colors denote the constant multiplier, 𝑎𝑘(0, 0) through 𝑎𝑘(1, 1), i.e. 4 different
periodic sets over the FPA.

gives the physical array response. We can now take the Fourier transform of this sum, and interchange the
summation and Fourier transform to obtain

𝐻(𝜉, 𝜂)∑

𝑖

∑

𝑗

𝑒−2𝜋𝑖(𝜉𝑥𝑖+𝜂𝑦𝑗)[1 + 𝑎1(𝑥𝑖 , 𝑦𝑗) + 𝑎2(𝑥𝑖 , 𝑦𝑗) + 𝑎3(𝑥𝑖 , 𝑦𝑗)] (7)

We can now change the notation and rewrite Eq. (7) as;
3

∑

𝑘=0

𝐻(𝜉, 𝜂)

𝑁″

∑

𝑛=−𝑁′

𝑀″

∑

𝑚=−𝑀′

𝑒−2𝜋𝑖(𝑛𝑃𝑥𝜉+𝑚𝑃𝑦𝜂)𝑎𝑘 (𝑛𝑃𝑥, 𝑚𝑃𝑦) (8)

where 𝑛,𝑚 describe the pixel numbers, 𝑁′ +𝑁″, 𝑀′ +𝑀″ represent the number of pixels, and 𝑃𝑥, 𝑃𝑦 describe the
pixel pitch of the array. The portion of the sum to the right of 𝐻(𝜉, 𝜂) represents an approximation of a Fourier
series of some function

𝑆𝑘(−𝜉,−𝜂) =

∞

∑

𝑛=−∞

∞

∑

𝑚=−∞

𝑒−2𝜋𝑖(𝑛𝑃𝑥𝜉+𝑚𝑃𝑦𝜂)𝑎𝑘 (𝑛𝑃𝑥, 𝑚𝑃𝑦) . (9)

4. AN EXAMPLE
Commercially available microanalyzer arrays are presently limited to patterns of linear polarizers, typically wire
grid polarizers. In this section we use the analysis from Section 2 to present the physical channel shapes for a
typical 0∘, 45∘, 90∘, −45∘ superpixel (unit cell) arrangement. In the figures, the channel responses for 𝑎0, 𝑎1, 𝑎2, 𝑎3
are presented separately for clarity. We assume a square pixel shape of side length 9𝜇𝑚.

4.1 Pixel shape
The square pixel shape functions implies that 𝐻(𝜉, 𝜂) is proportional to a sinc (𝜉, 𝜂) function, as derived in
Section 2. A graph of 𝐻(𝜉, 𝜂) is shown in Figure 3. This function is multiplied by the underlying approximate
𝛿-function channel structure which is generated by the sum shown in Eq. (8). The pixel shape has the potential
to be used as a kind of filter if subsampling of the microanalyzer array is allowed.
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Figure 3: The channel (Fourier) domain result of a square pixel shape function. The axes are in spatial frequency.

4.2 Physical channel structure
The physical channel structure is dependent on four parameters:

• Pixel shape,

• Number of unit cells,

• Unit cell geometry,

• Unit cell analyzer state.

For the specific example shown here, the pixel shape is square, we assume we can vary the number of unit
cells, the unit cell geometry is 2 × 2, and the analyzer states are by

𝑎0(𝑥𝑖 , 𝑦𝑗) = 1 (10)

𝑎1(𝑥𝑖 , 𝑦𝑗) =
𝑐𝑜𝑠(𝜋𝑥𝑖) + 𝑐𝑜𝑠(𝜋𝑦𝑗)

2
(11)

𝑎2(𝑥𝑖 , 𝑦𝑗) =
𝑐𝑜𝑠(𝜋𝑥𝑖) − 𝑐𝑜𝑠(𝜋𝑦𝑗)

2
(12)

𝑎3(𝑥𝑖 , 𝑦𝑗) ≡ 0. (13)

Figure 4: Conventional unit cell geometry.
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Figure 5: s0 channel for 𝑁 = 2 unit cells (superpixels). The magnitude is log-modulus transformed.
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Figure 6: s0 channel for 𝑁 = 32 unit cells (superpixels). The magnitude is log-modulus transformed.

The unit cell can be defined by the positions (𝑥0, 𝑦0) = (0, 0), (𝑥1, 𝑦0) = (9𝜇𝑚, 0), (𝑥1, 𝑦1) = (9𝜇𝑚, 9𝜇𝑚), (𝑥0, 𝑦1) =

(0, 9𝜇𝑚). Equations (11) and (12) imply that the contribution to 𝑎1 and 𝑎2 come from two separate unit cell
locations.

The unit cell geometry for the conventional micropolarizer array is fixed, which leaves the number of unit cells
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Figure 7: s1 channel for 𝑁 = 2 unit cells (superpixels). The magnitude is log-modulus transformed.
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Figure 8: s1 channel for 𝑁 = 32 unit cells (superpixels). The magnitude is log-modulus transformed.

as a free parameter. The number of unit cells (superpixels) can be different in the 𝑥 and 𝑦 directions, however for
brevity we assume they are the same, 𝑁, here. Equation (8) can then be used to compute the physical channel
structure for each of 𝑎0, 𝑎1, 𝑎2 as a function of 𝑁.

Figures 5, 7 and 9 show the channel structure of s0, s1, s2 for 𝑁 = 2 respectively. Notice that the magnitude is
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Figure 9: s2 channel for 𝑁 = 2 unit cells (superpixels). The magnitude is log-modulus transformed.
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Figure 10: s2 channel for 𝑁 = 32 unit cells (superpixels). The magnitude is log-modulus transformed.

log-modulus scaled; 𝑦 = sgn(𝑥) log(|𝑥|+1). Figures 6, 8 and 10 show the channel structure of s0, s1, s2 for 𝑁 = 32

respectively. The magnitude is also log-modulus scaled. As 𝑁 increased, the “sharpness” of the approximate
𝛿-functions increases. This sharpness can be used as a specified bound.
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Figure 11: Examples of 𝐷𝑗s for s0, s1, left and right respectively, at 𝑁 = 2. These particular 𝐷𝑗s are squares with
sidelength 16/𝑚𝑚. s2 is not shown because the 𝐷𝑗s for s2 are identical to those for s1.

5. BOUNDS
The analysis in the previous sections provided insight into what occurs to the physical channel structure as the
number of unit cells, 𝑁, is varied. In this section we briefly analyze how this can be used to derive bounds on 𝑁

to provide a “sharpness” requirement. First we define a cost function which characterizes the “sharpness.”

𝒪(𝑁) = ∑

𝑗

|∫ ∫
𝐷𝑗

𝐴𝐹𝑘,𝑁𝑥,𝑁𝑦(𝜉, 𝜂)𝑑𝜉𝑑𝜂| (14)

where

𝐴𝐹𝑘,𝑁𝑥,𝑁𝑦(𝜉, 𝜂) = 𝐻(𝜉, 𝜂)

𝑁″

∑

𝑛=−𝑁′

𝑀″

∑

𝑚=−𝑀′

𝑒−2𝜋𝑖(𝑛𝑃𝑥𝜉+𝑚𝑃𝑦𝜂)𝑎𝑘 (𝑛𝑃𝑥, 𝑚𝑃𝑦) , (15)

𝑁′, 𝑁″;𝑀′, 𝑀″ are functions of the number of superpixels in the 𝑥, 𝑦 direction, 𝑁𝑥 and 𝑁𝑦 respectively, and 𝐷𝑗
are two dimensional regions around the relevant 𝛿-function approximations, indexed via 𝑗.

𝐷𝑗s characterize specified “sharpness”; 𝒪(𝑁) characterizes how well a given array meets the “sharpness”
specification. Figure 11 gives an example of 𝐷𝑗s selected for s0, s1. An example of using the cost function to
determine 𝑁 give a “sharpness” requirement follows. If we require that our approximate 𝛿-functions have the
main lobe to be within a width of 2/𝑚𝑚, then we can compute 𝒪(𝑁) for the conventional micropolarizer array
as 𝑁 is varied. The 𝐷𝑗s used in this example are squares, as shown in Fig. 11, except that the width has been
shortened to 2/𝑚𝑚. Figure 12 shows the cost function, with a peak at 𝑁 = 56. The cost function decreases
for 𝑁 > 56 and then oscillates towards a fixed value. This is due to the integration of the negative side lobes
of the approximate 𝛿-functions. 𝑁 = 56 corresponds to the main lobe to side lobe transition just crossing the
boundary of the 𝐷𝑗s. For this specification, an array with 𝑁 = 56 would be sufficient.
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Figure 12: 𝒪(𝑁) as a function of 𝑁 = 2,⋯ , 512. The peak is at 𝑁 = 56.

6. CONCLUSIONS
We have derived a physical channel structure for general microanalyzer arrays in this communication. We have
shown that the physical structure depends on the pixel shape, the unit cell geometry, the spatial analyzer layout
within the unit cell, and the number of unit cells which are tiled over the detector. This physical structure
produces approximate 𝛿-functions. We have shown that when the channel structure is modeled as a set of ideal
𝛿-functions, a certain number of unit cells must be used to meet some specification of “sharpness”, or proximity
to ideal 𝛿-functions. The “sharpness” is primarily dependent on the number of unit cells used. If sub-sampling
is allowed (i.e. more pixels on the underlying focal plane than the overlayed microanalyzer array contains), then
this formalism gives potential for pixel shape, spatial bandwidth, and unit cell engineering for specific tasks.
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