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ABSTRACT

Recently we designed and built a portable imaging polarimeter for remote sensing applications.1 Polarimetric
imaging operators are a class of linear systems operators in the Mueller matrix reconstruction space, resulting
in a set of measurement channels.2 The nature of remote sensing requires channel crosstalk to be minimized for
either general Mueller matrix reconstruction or task specific polarimetric remote sensing. We illustrate crosstalk
issues for a spatio-temporally modulated Mueller matrix reconstruction operator, and show how to minimize
channel crosstalk by maximizing bandwidth between channels. Specifically channel cancellation allows increases
in channel bandwidth. We also address the impact that systematic deviations from the ideal operators and i.i.d.
noise have on the system channel structure.

Keywords: polarimetry, modulated polarimetry, linear systems, active polarimetry, Mueller matrix, aliasing,
crosstalk

1. INTRODUCTION

Channeled Mueller matrix polarimeters and the concept of using these channels was first introduced by Azzam.3

Azzam published a very specific case, 1) a specific temporal framework was analyzed, 2) an implicit assumption
about the object was made, the object had no temporal bandwidth, i.e., the object was stationary in time.
Oka, Sabatke, Derniak, Kudenov, and Hagen then demonstrated both spectrally channeled and spatially (over
spectrum) channeled systems,4–10 mostly Stokes polarimeters. Dubreuil et al11 then presented a spectrally
channeled Mueller matrix polarimeter, which of course is non-imaging since the focal plane array is used to resolve
the spectrum. LaCasse, Chipman, Tyo, and LeMaster and Hirakawa12–14 then described micropolarizer array
partial Stokes polarimeters as channeled systems, and LaCasse et al presented a spatio-temporally modulated
hybrid channeled Stokes system,15 and subsequently both Myhre et al16 and Zhao et al17 presented spatially
modulated full Stokes polarimeters. Finally Alenin and Tyo2 formalized a general framework which describes
channeled polarimeters almost completely, both Mueller and Stokes.

Prior to the work by LaCasse et al ,12,13,15 bandwidth in channeled polarimetric systems had not been
addressed, or only addressed as a consequence of instrumental “error.” Additionally, prior to Alenin and Tyo2

channeled systems were designed in an ad-hoc manner. In this communication we address bandwidth using
the systematic design tools introduced by Alenin and Tyo2 for a hybrid spatio-temporally modulated channeled
active polarimetric system.
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2. FORMALISM AND CHANNELS

Note that this section originally appeared in our other publication in this conference proceeding1 and is de-
rived/adapted from that section to address the topic of this communication for ease of reference. Portions may
be reproduced verbatim, however quotes will not be used.

We use the Mueller-Stokes mathematical formalism here, as it is most commonly used in instrumental polar-
ization and polarimeter design. This analysis is, however, agnostic to the formalism used, a coherence formalism18

with periodic modulators could also be used and would have similar results. In the next sections, it should be
kept in mind that modulations are done in some physical domain, they are periodic, i.e., a superposition of
sinusoidal functions, and the ”channels” are the resultant δ-functions which ensue from the Fourier transform of
the sinusoidal modulations.

2.1 Modulated Mueller formalism

The Stokes parameters are described by

s =


s0
s1
s2
s3

 ∝


〈|Ex|2〉+ 〈|Ey|2〉
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∗
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∗
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 , where s0 > 0, s20 ≥ s21 + s22 + s23 (1)

where 〈·〉 denotes the time average, s0 is proportional to the total irradiance, s1 is proportional to the preva-
lence of horizontal (0◦) over vertical (90◦) polarization, s2 is proportional to the prevalence of +45◦ over −45◦

polarization, and s3 is proportional to the prevalence of right circular over left circular polarization.19 Because
optical sensors measure a quantity proportional to the time averaged Poynting vector, the phase information is
lost, and only the incoherent time averaged polarization information can be obtained.18,19

For materials which can be described via linear optical interactions, we can use the Mueller-Stokes formalism.
A Mueller matrix, M , is a matrix which linear transforms one set of Stokes parameters, sin, into another set of
Stokes parameters, sout:

sout = M · sin (2)

Notice that M ∈ R4×4 but not every 4 × 4 real valued matrix is a Mueller matrix due to the constraints in
Eqn.1, see Gil20 for details.

With an active, or Mueller matrix, polarimeteric instrument, we must modulate in irradiance to infer the

Mueller matrix of an object, M(x), where x =
[
x y z t σ

]T
. We can then rewrite Eqn. 2 to have Mueller

matrices and Stokes parameters be functions of space, time, and wavelength or wavenumber. Eqn.2 then becomes
s0,out(x)
s1,out(x)
s2,out(x)
s3,out(x)

 =
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where for simplicity we fix sin. Our detector then measures a quantity proportional to s0,out(x). For a Mueller
matrix measuring instrument, we have an unknown object Mueller matrix, Mobj(x), and we write down the
instrument equation which modulates Stokes parameters:21

sout(x) = A(x) ·Mobj(x) ·G(x) · sin (4)

= A(x) ·Mobj(x) · sG(x) (5)

where G(x),A(x) are the generator and analyzer Mueller matrices respectively, known and modulated via the
physical instrument. The generator modulation can then be thought of as only a Stokes parameter modulation,
sG(x).



2.2 Channels

Eqn.5 can be expanded to obtain a linear equation19 for s0,out(x).

s0,out(x) =

3∑
i=0

3∑
j=0

a0i(x)sj(x)mij(x) (6)

where a0i(x) are the elements of the first row of A(x), sj(x) are elements of sG(x), and mij(x) are elements of
Mobj(x). We can then take the Fourier transform of s0,out(x) to obtain

S0,out(ρ) =

3∑
i=0

3∑
j=0

A0i(ρ) ∗ Sj(ρ) ∗Mij(ρ) (7)

Where x → ρ in the Fourier transform, ∗ denotes convolution, and the shift to capital letters indicates a function
has been Fourier transformed. If a0i(x) and sj(x) are superpositions of sinusoidal functions, then A0i(ρ) ∗Sj(ρ)
is a set of δ-functions, and each Mij(ρ) is then convolved with each δ-function in the set. The complete set of
δ-functions for the system

3∑
i=0

3∑
j=0

A0i(ρ) ∗ Sj(ρ) (8)

are defined as the channels of the system, or the system’s channel structure.2

2.3 System equation

All examples in this communication will assume a quad-retarder + micropolarizer array Mueller matrix polarime-
ter system. This results in a spatio-temporally modulated system channel structure. The details of the design
and an actual instrument implementation are in Vaughn et al1 and the system equation is reproduced below:

sout = P (x, y) ·R(ν4, ε4, δ4) ·R(ν3, ε3, δ3) ·Mobj(x, y, t) ·R(ν2, ε2, δ2) ·R(ν1, ε1, δ1)sin (9)

where

P (x, y) = micropolarizer array Mueller matrix (10)

R(νj , εj , δj) = retarder Mueller matrix (11)

νj = retarder frequency in 2π
radians

s
(12)

εj = retarder start position in 2π radians (13)

δj = retarder retardance in radians (14)

Mobj(x, y, t) = Mueller matrix of the object (15)

Where of course only the final irradiance value, proportional to the s0,out(x) element of sout(x) is sampled. The
channels are encoded in s0,out(x).

3. CHANNEL DESIGN

Designing polarimetric instruments using a channeled framework is somewhat new in the field, especially for
instruments which are not spectrally modulated. Spectral instrument designers have, however, utilized channel
design in an iterative way, tweaking the system designs and then observing the channels which result, then again
tweaking the system design. Here, we specify constraints and needs, and then optimize the system directly in the
channel space for some cost function dependent on those specifications. This design paradigm allows for faster
and (sometimes) conceptually simpler system configuration.



We will only address spatio-temporally modulated systems here, and we assume modulations are of the type

f(x, y, t) = h(x, y) · g(t), (16)

i.e., that any modulation is mathematically separable between time and space. Non-separable modulations
can be constructed (envision a rotating focal plane array with a micropolarizer, or a spatial light modulator
modulating in time and spatially), but we will address these in a future publication. A separable system only
allows for bandwidth improvements from channel cancellations or combinations, while a non-separable system
may allow for improvements from rotations of the channel structure, however the latter remains an open question.
We emphasize once again that the channels are δ-functions in the Fourier domain which result from sinusoidal
modulations of irradiance in the physical domain, i.e. space, time, wavelength, etc.

3.1 Notation

Visualization of channel structures can be accomplished by graphing the sets of channels, or δ-functions over
the Fourier domain dual to the physical modulation domain. Another systematic way of graphing the modu-
lations is the frequency phase matrix (FPM), introduced by Alenin and Tyo,2 which is a book keeping method
for the channel splitting behavior, the signs, and real and imaginary components of the δ-functions. In this
communication we will graph the channels as they actually appear in the channel space to reinforce intuition
and understanding.

Table 1: Notation for channels.

positive negative

re
a
l

im
a
g
.

A δ-function can be characterized by its position, and its complex magni-
tude. Table 1 outlines the graphical notation that we will use, the blue triangles
represent the real part of the magnitude, red triangles represent the imaginary
part of the magnitude, the directions that the triangles point represent whether
the magnitude is positive or negative, and size of each triangle represents the
absolute value of the real part or the imaginary part. Note that we will only
show the channels for a single Mueller matrix element for each visualization,
with the channels for all other Mueller matrices represented by light gray-blue
circles. Keep in mind that many channels, for each Mueller matrix element,
end up being added together at the locations shown. Again, the relationship

between the channels of different Mueller matrices is additive. An example of the channel structure for a spatio-
temporally modulated system for m23 is shown in Fig.1.

Some of the examples presented here will be normalized to a temporal frequency range of [−1, 1], this is be-
cause for instrument design only the relative frequencies are important, we are always limited by some maximum
sampling rate in practice, so relative bandwidth with respect to a maximum absolute frequency of 1 is what
must be optimized for. Due to the assumption of separable modulation functions for space and time and Mueller
matrix physicality conditions, channels are fixed to travel along constrained paths in the Fourier domain.

3.2 Optimization

Once some spatio-temporal modulation scheme is selected, and the free parameters of that scheme are known,
an optimization over the parameters for some specific cost function can be carried out. Alenin and Tyo2,22

have used cost functions which optimize the spectral channel structure for noise performance, but other cost
functions may be used. In this communication, we jointly optimize for bandwidth and noise using the following
cost function:

O(p) =
[CN(p)]n

dist(p)
. (17)

where p is a vector of free parameters which control the channel structure, the dist(p) function quantifies the
distance between channels, i.e., bandwidth, CN(p) is the condition number of the “mixing matrix” Q (details
about Q are in Alenin and Tyo2), and n ∈ R+ is a weighting parameter for condition number corresponding to
noise optimization. This is valid since CN ≥ 1 by definition. The optimization then minimizes O(p) over p. Note
that as we increase n, the optimization tends to favor noise performance over bandwidth. A system conditioning
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Figure 1: Example of a spatio-temporal channel structure with δ-functions specific to m23. The maximum
bandwidth corresponds to the minimum distance between two adjacent channels, taken over all possible adjacent
channel pairs.

metric must be included in the cost function to ensure reconstructablility of the full Mueller matrix, i.e., higher
bandwidths can be found which result in some partial Mueller matrix polarimeter (pMMP) reconstruction, but
the system conditioning would be infinite for the full Mueller matrix reconstruction. This fact has utility for
pMMP designs, but will not be addressed here.

4. BANDWIDTH

The treatment of bandwidth for channeled systems is mature and well known in information and communications
theory.23–25 The difficulties of using a channeled systems framework for polarimetric instruments are primarily
1) constructing channels in 2 or more dimensions (many systems in communications theory are 1 dimensional),
2) addressing physicality constraints in an analytical way, and 3) addressing the complicated channel mixing
behavior that is inherent to polarimetric instruments. 3) has mostly been addressed by Alenin and Tyo.2 2) is a
complicated subject and we will not delve into details here, but we emphasize again that these constraints must
be enforced when optimizing for some cost function.

We will discuss a spatio-temporal system, with modulation in the domain

x =

xy
t

 (18)

and examples will be from a quad-retarder + micropolarizer array system.1 First we will briefly review convolu-
tion. Given some unknown quantity, m(t), this quantity can be modulated with a sinusoidal function. Without
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Figure 2: An example of convolution of data with a channel. The gray band represents the range of εc, resulting
in data being outside of the εc range for −0.5 < ν < 1.5. This implies a bandwidth of 2 arb. units for the Mueller
data.

loss of generality, we choose cosine here:

f(t) = cos 2πν0t ·m(t) (19)

=⇒ F {f(t)}t→ν = F {cos 2πν0t ·m(t)}t→ν (20)

=⇒ F (ν) = F {cos 2πν0t}t→ν ∗ F {m(t)}t→ν (21)

=⇒ F (ν) =
1

2

[
δ(ν − ν0) + δ(ν + ν0)

]
∗M(ν) (22)

=⇒ F (ν) =
M(ν − ν0)

2
+

M(ν + ν0)

2
(23)

where F {·} is the Fourier transform, ∗ is convolution, and δ(ν) is the Dirac delta function. The last line is
due to property of convolution with delta functions. This gives us some tools for conceptual descriptions for
the forward problem and hence the bandwidth. There will exist a set of channels (δ-functions) for each Mueller
matrix element Mij(ρ) in the Fourier domain. For each channel in that set, Mij(ρ) will be copied at that
channel’s location with Mij(0) being located precisely where the delta function is located. We can then define
the bandwidth of Mij for some threshold εc ≥ 0 as the values of ρ where |Mij(ρ)| > εc. Fig.2 clarifies these
concepts.

The polarimetric system channel structure contains constraints on bandwidth because there is a finite distance
between channels as shown in Fig.1. The channel structure determines the bandwidth available for reconstruction.
When the bandwidth of the data becomes greater than the available bandwidth, then channel crosstalk occurs.

5. CROSSTALK

Crosstalk is similar to aliasing, but not the same phenomenon. Crosstalk is the result of limited channel band-
width, and information (convolutions of data) in the channel exceeding the bandwidth of that channel and
”spilling or bleeding” over to an adjacent channel. Crosstalk is a result of the choice of channel structure, as
opposed to the sampling rate (aliasing), even a continuously sampled channeled (unaliased) system can have
crosstalk. An example of crosstalk is shown in Fig.3.



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

frequency, ν, in arb. units

y

εc
Mueller data
Mueller data
Sum of Mueller data

channels

Figure 3: An example of channel crosstalk. Mueller data is placed at two channels, with the distance (bandwidth)
between them less than the bandwidth of the Mueller data. When added, the Mueller data from different channels
adds together, leaving no remedy to differentiate data between channels in the region of bandwidth crossover
when given arbitrary Mueller data.

5.1 Filtering

Typically crosstalk can be “mitigated” by using filters around the channels to suppress or apodize the region
where crosstalk occurs. This does not fully mitigate the corruption from crosstalk however because

• Filters which apodize in some way result in smoothing of the data, essentially removing information.

• Similar to the above, apodization or cutoff from the filters essentially reduces the bandwidth of the resulting
Mueller data.

• Filters won’t help much in the case where a great deal of crosstalk is present.

Filtering is needed, but cannot fully alleviate the crosstalk issue. Filtering will not be addressed in depth here;
the literature on filtering is vast and mature in control theory and electrical engineering. Keep in mind, however,
that if the statistics of the objects being measured are known, then optimal filters can be designed.26

6. MAXIMIZING BANDWIDTH

Our focus will be on increasing relative bandwidth to reduce crosstalk, and subsequently increasing the system
resolution or speed for spatio-temporally modulated active polarimetric systems. In order to maximize the
relative bandwidth, we must think about the system in a way which addresses efficiency, otherwise an optimizer
will increase the maximum frequency (and hence the relative frequency distance between channels) ad infinitum
until a specification is met. We also don’t have instruments with arbitrary measurement bandwidth. In order
to constrain the bandwidth maximization to relative frequencies, we can normalize all of the channels to be
contained in a cube (or rectangular prism in certain cases) where the maximum frequency is normalized to be
some fixed value. We can choose different norms to accomplish this as long as we are consistent. The two
simplest methods are 1) normalize in a 2-norm way, that is your maximum frequency is taken as a vector and
normalized by its 2-norm length, and all other channels are also normalized by this same length, or 2) normalize
in an ∞-norm way, that is normalize each frequency domain coordinate by the respective maximum frequency



Figure 4: An example of varying frequency parameters to move channels around in the channel space. Note
the cancellation/addition at certain parameter values which opens up more bandwidth between the channels.
Animated in the electronic version, use the controls displayed to view.

channel domain coordinate. This is what we do for our system examples here. To clarify with an example,
suppose that our maximum frequency channel is located at [0.5, 0.5, 60]T , then the normalization factors would
be

n2-norm =
√

0.52 + 0.52 + 602 (24)

n∞-norm,0 = 0.5 (25)

n∞-norm,1 = 0.5 (26)

n∞-norm,2 = 60 (27)

(28)

and for an arbitrary channel located at carb =
[
ξarb ηarb νarb

]T
the two normalizations would be

carb,2-norm =
carb√

0.52 + 0.52 + 602
and carb,∞-norm =


ξarb

0.5

ηarb

0.5

νarb

60

 (29)

In the examples here, we only normalize the locations of frequency corresponding to the temporal domain, ν,
because the examples assume a fixed micropolarizer array which cannot be changed.1 This results in normal-
ization of the spatial frequency coordinates having no effect on the analysis, but in general, if optimization over
spatial frequency is an option, the spatial frequency channel coordinates would also need to be normalized. Nor-
malization ensures that for a relative bandwidth optimization we are making an oranges to oranges comparison
as channel location changes. Note that the use of different normalization types will lead to different optimization
outcomes.

6.1 Channel cancellation

The next step is to attempt to maximize the relative channel bandwidth, now that the channels are all normalized
to a maximum frequency. This maximization can typically be accomplished by optimizing over the system channel



structure’s free parameters p as described in Eqn. 17. Typical parameters for a spatio-temporally modulated
polarimeter (which is not spectrally modulated) include

• retardance and retarders, spatially or temporally modulated.

• spatial or temporal analyzer/diattenuator modulation.

• rotation or rotators; these elements are typically combined with one of the types listed above to achieve a
modulation.

For a separable channel structure, only channel cancellation/combination or reduction of overall channels may
be used to increase the relative bandwidth. Fig. 4 shows channel combination as relative retarder frequency is
changed for a quad-retarder + micropolarizer array system. At certain relative frequencies, channels combine
or cancel depending on their magnitudes, providing larger distance (bandwidth) between channels. Running an
optimizer over a cost function can then find an optimal channel structure, given your free parameters p. An
example of an optimal (to the best of our knowledge) channel structure for the quad retarder + micropolarizer
array system is shown in Fig.5.
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Figure 5: Optimal channel structure for a specific quad retarder + micropolarizer channel structure for m23.
Reproduced from a figure in Vaughn et al .1



6.2 Discussion

Once the channeled system framework is understood, and the free parameters, p of a spatio-temporally modulated
system are specified or known, then it is straightforward to design a cost function and run an optimizer over that
function to optimize for bandwidth or jointly for bandwidth, noise, and other constraints. The most difficult part
of directly optimizing in the channel space is not, however, defining a cost function and running an optimization
against the cost function. The difficult task is designing a model which properly describes the channel structure
itself, with proper physical constraints. We have designed a model for the specific case of a quad-retarder +
micropolarizer array system, but we hope to adapt our current model to generate generic spatio-temporally
modulated systems in the near future.

Additionally, if the statistics of an object or set of objects are known, then non-uniform bandwidth can be
maximized. All of the examples shown in this communication optimize for an equal channel bandwidth between
all channels. In certain cases, more bandwidth may be wanted for certain sets of channels over other sets of
channels and for certain Mueller matrix elements. This can all be accomplished by using the appropriate cost
function, but is non-trivial due to the channel mixing which occurs between Mueller matrix elements.

7. NOISE AND SYTEMATIC ERROR

The channel bandwidth optimization discussed in the previous section must be paired with the sensitivity of the
system to deviations from the ideal optimized parameters, i.e., an actual system will have non-ideal modulations
and modulator elements. We present some preliminary results on systematic deviations here, but we have not
fully worked out how to measure the sensitivity of a system’s channel structure to systematic deviations (often
called systematic error in the literature). The sensitivity to random noise sources is also discussed here, but again
we have not worked out a general systematic way to compute the sensitivity of channel structures to random
noise when bandwidth is taken into account (including filtering effects). Noise effects from the inversion of the
Q matrix, however, have been addressed.2

7.1 Systematic error

Systematic error will occur when the actual system deviates from the designed system, or when there is some
consistent bias due to physical instrument details. Here systematic error for a channeled system refers to the
differences between the real system’s channels as compared with the ideal channels from some designed channel
structure. Issues arise for a separable channeled system when channel cancellation/combination has been used
as a tool to increase system bandwidth.

For separable channeled systems a potentially serious problem arises: at the locations in the frequency space
where the channel cancellation(s) occurred, channels will again be present due to deviations of real components.
These spurious channels will be convolved with Mueller data, and introduce channel crosstalk. We really only
have one option available, to minimize the magnitude of these spurious channels so that the crosstalk into the
adjacent channels is low. An example of is shown in Fig. 6, the small triangles represent the spurious channels.

We have found a way to reduce the effects of the spurious channels for the quad retarder + micropolarizer
system, which was to re-optimize over our channels using the remaining free parameters available while fixing
the ones constrained by the physical instrument components. In our quad-retarder + micropolarizer system
example, once our actual retardances were fixed, we re-optimized using the starting position of each retarder and
added a parameter to our cost function which characterized the magnitudes of the spurious channels compared
with the magnitudes of the adjacent channels. For general spatio-temporal systems this kind of method will
work after some of the physical components are specified, if there are any free parameters left to optimize over.

In fact, an iterative approach would likely yield the best results with a single component at a time be-
ing sourced, measured and characterized, then the system can be re-optimized to reset the other components
specifications to minimize the crosstalk, and then the process is repeated.27
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Figure 6: An example of systematic error in a real instrument, the small triangles represent channels which are
present due to retardance deviation from the specifications.



Gaussian detector noise

Figure 7: Gaussian detector noise effects on channel structure. Note that these are the same channels as shown
in Fig. 6, but plotted along the ν lines. The left column is the real part, the right column is the imaginary part,
there are 16 colors in each graph representing each Mueller matrix element. The first row is ν at ξ = 0, η = −0.5,
the second row is ν at ξ = −0.5, η = 0 and the third row is ν at ξ = 0, η = 0. Animated in the electronic version.

7.2 Noise

The other impacts to real channeled systems are random noise, for instance detector noise. The results presented
here are preliminary, and we only modeled detector Johnson (Gaussian like) noise for the detector. The results
are simulated, but show that the channel structure itself is quite robust to detector noise. Here we switch to a
different view of the channels to better view the noise effects. Each line of channels in the ν direction is plotted
in Fig. 7 and Gaussian noise is added in a simulation to the final irradiance for this result. The SNR is shown
in the figure, and it appears that the channel structure is stable for an SNR above somewhere between 1 and 2.
This result will need to be validated on the real instrument, and we plan on testing this in the near future.

We have not modeled the effects of noise on the reconstruction for our specific system yet, but noise effects
have been addressed for channeled systems by others.2,22,28

8. CONCLUSION

Channeled polarimeter design has changed the way that instrument designers approach the design process, and
allows engineers to systematically design both general and task specific polarimeters. We have presented examples
and some general insight into using channeled system design for spatio-temporally modulated Mueller matrix
polarimeters. We also address some of the intricacies of channeled design, and give some preliminary examples
of possible systematic errors and noise effects on channel structures. Furthermore, we give an example of how
to mitigate some of the systematic errors, and in the future will use a different approach when building a real
instrument by re-optimizing the channel structure after each instrument component is sourced. In the future we
hope to build a fully generic channeled system model for spatio-temporally modulated instruments, so that the



community can design their own instruments in a systematic way. We also need to validate our systematic error
mitigation on our real instrument, and validate the effects of noise on the channel structure of a real instrument.
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