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In this paper, we present the first in-depth analysis of the bandwidth tradeoffs, error performance, and noise
resiliency of full-Stokes micropolarizer array (MPA) designs. By applying our Fourier domain tools that provide
a systematic way for arranging information carriers and allocating bandwidth, we develop a number of new
full-Stokes MPA layouts and compare them to the existing full-Stokes MPAs in the literature, all of which
use 2 x 2 pixel unit cells to build the MPA. We compare the reconstruction accuracy afforded by these traditional
designs with the generalized 2 x L family of MPAs, a 3 x 3 tiling, as well as a 2 x 2 x 3 layout that uses multiple
snapshots and trades off temporal resolution for spatial resolution. Of those systems, the hybrid spatiotemporally
modulated 2 x 2 x 3 MPA provisions the most bandwidth and provides the highest reconstruction accuracy,
while the modified 2 x L family remains the best performing single-snapshot MPA. Additionally, we study
the degradation of reconstruction accuracy under the presence of systematic error in MPA fabrication. We find

that reducing the amount of correlated error is by far the largest factor in ensuring robust performance.
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1. INTRODUCTION

Modulated polarimeters determine the optical polarization
state by multiplexing a set of polarization-dependent sidebands,
usually in an orthogonal frequency division multiplexed sense
onto a detector’s given bandwidth. These sidebands are created
by optical elements whose polarization properties vary (usually
periodically) as a function of an independent variable of the
system [1], such as time [2,3], space [4,5], wavelength [6],
angle of incidence [7], or even combinations of multiple inde-
pendent variables [8,9]. Polarimeters can be active (Mueller) or
passive (Stokes), but the same principles can describe both [10].
Because polarimeters use the bandwidth of a single set of
detectors to measure multiple pieces of information, they in-
herently give up resolution relative to a non-polarimetric
imager using the same set of detectors.

Traditionally, polarimeters have been described by the data
reduction matrix (DRM) method [2], and their optimization
has generally been in terms of system conditioning and signal-
to-noise ratio (SNR) for zero-bandwidth systems [11-13].
However, with the recent description of modulated polarime-
ters in terms of information channels [1], interest is growing in
using bandwidth to describe and quantify their performance.
The question of how much bandwidth is needed for a given
information channel and how to allocate it most effectively

within the total channel structure is difficult to address for
the most general case. In this paper, we limit our focus to
the class of division of focal plane (DoFP) polarimeters [14].
The underlying micropolarizer array (MPA) that enables the
polarization sensitivity means that such polarimeters can be
treated as channeled ones [10]. The first MPA was introduced
by Chun [15], and that layout is still being used by many [16]
despite clear limitations that have since been described. The
need to consider bandwidth tradeoffs in polarimeter design
was realized by Tyo, LaCasse, and colleagues [1,4,17], while
LeMaster and Hirakawa were the first to apply it to the MPA
design [18]. Since then, we showed that the spatial frequency
carrier locations within their 2 x 4 MPA are extendable into a
family of 2 x L MPAs that open the door for further balancing
of the bandwidth provided, and the reconstruction quality
achieved [19].

Most MPAs are only sensitive to linear polarization param-
eters, and virtually all rigorous analyses consider only linear
MPAs. In this paper, we leverage a set of general tools that
we developed for arbitrary focal planes [10,20] to provide
the first in-depth treatment of MPA designs that can measure
all four Stokes parameters, such as those introduced by Zhao
and colleagues [21], by Bachman and Peltzer [22,23], as well as
by Myhre, Hsu, Pau, and colleagues [24,25]. We compare the
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Fig. 1. MPAs. Top row: A, Bachman’s 2 x 2; B, Myhre’s 2 x 2; C, this work’s 2 x 4; D, this work’s 2 x 10; E, this work’s 3 x 3; F, Alenin’s
2 x 2 x 3. Middle row: Fourier domains with ¢/x indicating filled and empty channel centers, respectively, as contained within the corresponding
A; solid lines outline the allocated channel bandwidths, while dotted lines outline the allocated 5y bandwidth of Bachman’s and Myhre’s MPAs. The
2¢ in E denotes the complex angle in ¢®. Bottom row: the volume enclosed within the Poincaré sphere by the analyzing vectors.

performance of these demonstrated full-Stokes MPAs to a
number of new designs presented here.

A. Conventional Polarimetry
Stokes parameters are commonly used to describe the polariza-
tion of incoherent light and are formed into a vector [14],

S=[s5 51 % 53]T

=[Iy+1y Iy-Ty Iis-I4 Ig-1]" (1)

The latter three parameters represent differential irradiance
measurements between pairs of orthogonal states and lie inside
st + 53 + 3. To estimate Stokes
parameters, indirect measurements are made by passing light
of an unknown polarization state S through a series of predeter-
mined analyzing polarization states A,. By grouping N mea-
surements together and assuming that the Stokes parameters
are constant for these measurements,
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We can estimate the Stokes parameters by calculating the
pseudo-inverse W* and applying the DRM,

S=WT=W'WS+Wi (3)

where n represents additive detector noise.

Currently, most MPAs are limited to reconstructing the first
three Stokes parameters. However, the difficulty of construct-
ing pixels sensitive to circular polarization is slowly being alle-
viated as manufacturing improves. Zhao and colleagues were
the first to implement a full-Stokes MPA [21] by placing liquid
crystals on top of each pixel with varying amounts of twist angle
in a 2 x 2 unit cell arrangement. Their design effectively re-
placed one of the pixels of Chun’s MPA with a right circularly

polarized sensing filter, thus resulting in the R/0/45/90 MPA.
Later, Bachman and Peltzer arrived at a similar layout that
achieved circular polarization sensitivity by building spiral plas-
monic antenna-like structures on top of each pixel [22,23]. The
two permutations offer identical performance; the permutation
analyzed in this paper more closely resembles Bachman’s MPA,
shown in Fig. 1A. Soon after, Myhre, Hsu, Pau, and colleagues
[24,25] brought full-Stokes MPAs closer to a practicable reali-
zation through their approach of patterning birefringent poly-
mers on top of micropolarizers. They proposed a number of
MPAs; however, their designs did not optimize for maximum
Stokes channel bandwidth and, instead, optimized for mini-
mum condition number (CN) of the unit cell's W. The result
is the familiar regular tetrahedra inscribed within the Poincaré
sphere [11-13]. Their designs included the straightforward
application of § = cos™'(~2/3) linear retarders at +15.1°
and £51.7° on top of a non-patterned linear polarizer [12],
as well as the MPA, where the polarizer layer is patterned
with Chun’s conventional 0/45/90/135 orientations, while § =
3 cos™! (1/3) linear retarders are aligned at 135/90/45/0 on top.
The latter of the two MPAs is considered in this paper and can
be seen in Fig. 1B. Recent work has even combined MPAs with
color filter arrays (CFAs) [26], and, while that problem is
beyond the scope of this work, the methods developed in
our previous work [20] could be used to extend this work
for more optimal CFA integration.

B. Channeled Description

We recently developed a general set of Fourier domain tools for
designing channeled focal plane arrays (FPAs) [10,19,20], and
here we employ them to look at a number of full-Stokes MPA
designs with the goal of identifying those that yield optimal
bandwidth. In Eq. (2), Stokes parameters are assumed to be
constant; to incorporate it as being a function of position,
we expand /, into a sampled two-dimensional (2D) scene
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I(x,,y,). Taking its Fourier transform I(& 1), we identify the
channel structure F{C}, where C is a length 24/ + 1 vector
that lists the channels, and M is the number of independent
modulation functions [10]. We can determine a (2M + 1) x
4 matrix Q,

‘/T{g} = gf{S} = I:(—lf)mfo (_l.f,;];y] ﬂé,q;;z ﬂf,q;53 ]"T{§})
(4)

which relates the channel structure to the Fourier transform of

the Stokes parameters. In Eq. (4), 9, describes how the

Stokes parameters are distributed in the polarimeter’s channel
structure. Similar to the DRM method in Eq. (2), we can
reconstruct S by inverting the process,

s = F QI FICH, ®)

where Q* is the pseudo-inverse.

2. FULL-STOKES MICROPOLARIZER ARRAYS

A. 2 x L Family of MPAs

The modified 2 x L family of full-Stokes MPAs is a potent, but
non-obvious, follow-on to the 2 x L family we introduced pre-
viously for linear MPAs [19]. Its analyzing vector is

1
1 | V/2/3 cos(amn) cos(bnr)
2, /2/3 sin(amr) cos(bnr)
\/1/3 cos(mn)

where 7 and 7 are integer pixel coordinates, while # and & are
the carrier frequencies in x and y in cycles per pixel, respectively.
The modification from Eq. (5) in our 2017 Optics Letter [19]
is the addition of an s; carrier, which requires the reduction of
signal in s; and s, by a factor of \/2/3 to ensure the optimal
CN of /3 for W. We assume that each pixel is composed of a
cascaded linear retarder (LR) with fast axis orientation ;g and
retardance Oy g and linear polarizer (LP) with orientation @ p.
The following patterning is one of the many possible permu-
tations that achieve the desired analyzing vector of Eq. (6):

01p(m, n) = mod(amn /2 + bnr /2, n), (7a)

A= (6)

O1r(m, n) = mod(3z/4 - (1 - aymn/2 - bnz/2, x), (7b)

Sir(m, n) = cos™1(1/3) /2. (7¢)

The retarders’ Oy is patterned as complementary of the 4
parameter—this is done to place the s3 carrier at the Nyquist
boundary in &. As a result, the modified 2 x L family benefits
greatly from having an even L. For a hypothetical odd Z, you
would be required to make a choice between having non-unity
degree of polarization (DoP) analysis states or having a set of
harmonic s3 channels that interfere together and reduce the
available bandwidth. Avoiding the choice altogether by enforc-
ing an even L is a sensible approach. Note that there is an im-
portant distinction between the scenarios when £/2 is odd and
when it is even. In the former, we will have 2L different ana-
lyzing vectors, whereas in the latter, we will only have L differ-
ent analyzing vectors, which could translate into cost savings.

Vol. 57, No. 9 / 20 March 2018 / Applied Optics 2329

For the even L case, we use the frequency phase matrix [10] to
obtain the channel structure,

36(En)
e lro(e-sned) +o(e )]
Lol ) o)
r[+o(e-1.0) +a(s+1,0)]

which nominally has seven non-empty channels with 2 and &
determining the overall positioning of carriers. We will consider
two members of this family in greater detail: the 2 x 4 MPA
with 2 = 1/2, and b =1, as shown in Fig. 1C, as well as
the 2x10 MPA with 2=3/5, and 6 =1, as shown
in Fig. 1D.

|._‘

&

A )

B. 3x3 MPA
The 3 x 3 MPA shown in Fig. 1E has the following analyzing

vector:

1
A 1 cos(2mn /3) cos(2nm/3) . ©)
2 cos(2mn/3) sin(2nx/3)
sin(2mz /3) cos(2nm /3 + 45°)

It can be accomplished with the following 3 x 3 pattern:

1 V5/8 \/5/8

Prs= |1 /5/8+a /5/8+al|, (10a)
1 /5/8-a +/5/8-a
0°  -90° -90°
l//3x3 = [_600 300 300 ‘|: (10b)
60°  -30° -30°
0 -/3/2 +4/3/2
1
X3X3=ztan_1 0 +/3/2+p -\/3/2+p|> (10c)

0 -\/3/2-p +/3/2-p
where @ = 34/3/16, and 8 = /3/2, while p, 2y, and 2y

correspond to the spherical coordinates within the Poincaré
sphere as a DoP, azimuthal angle, and polar angle, respectively.
The azimuthal angle corresponds to the micropolarizer orien-
tations, while the microretarder parameters that result in y3,3
can be achieved with the following patterning:

0° 135 45°

O = | 0° 165° 75° |, (11a)
0> 15° 105°
0° 50.77° 50.77°

Sip = | 0° 59.13° 59.13°|. (11b)

0° 24.15° 24.15°
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Its corresponding channel structure is

36(&n)
e R
(ofe - +ofe <1+ )
A e(extn-y) +o(ex b))

This 3 x 3 MPA is unique in this paper, as it is the only one
having non-unity DoP states, which are necessary to “sample”
the carrier-producing periodic functions properly. For all other
MPAs in this paper, the sampling of the carrier-producing
periodic functions falls onto the peaks, resulting in pure states.
If one was to ignore Eq. (10a) and make all states purely
polarized, the channel structure shown in Fig. 1E would no
longer hold—the indicated empty channels would be popu-
lated, reducing the system’s bandwidth. Although having
non-unity DoP states is a disadvantage compared to other sys-
tems [27,28], the system’s performance is a combination of
noise, bandwidth, and system error considerations. Combined
with it having non-optimal DRM, inclusion of the 3 x 3 MPA
specifically tests the relative importance of bandwidth.

[P
Il

(12)

C. Multi-snapshot Systems

We extend the multi-snapshot linear MPAs from our previous
work to full-Stokes systems. At the base is the original 2 x L
family [19] with 2 = 6 = 1, resulting in a simple 0/90/90/
0 MPA that only has channels located in the corners of
the Fourier plane. We put a § = 126.32° linear retarder in
front and cycle it through three orientations, 0 =
{15.66°,45.00°, 74.34°}. These values differ from our previous
work; the new solution was chosen for its even steps in the ori-
entations, making implementation more practical. We call this
polarimeter the 2 x 2 x 3 MPA, and it can be seen in Fig. 1F.
The analyzing vectors inscribe a regular octahedron. To be fair

Table 1.

Notable Full-Stokes Micropolarizer Array Patterns?
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in comparisons with other MPAs, special care is required—the
exposure time is split into three parts, and each one receives a
noise contribution with the variance scaled by 1/3. This family
of systems trades off temporal bandwidth for spatial bandwidch
and thereby enables maximum separation of polarization-
carrying sidebands and intensity-carrying basebands. This modu-
lation scheme represents an alternative view to Vaughn’s hybrid
modulated fast-Stokes polarimeter [29]. Instead of taking the
Fourier Transform of all the modulation dimensions, including
temporal, we directly combine three discrete snapshots, as advo-
cated in our original work on channeled polarimeters [10].

3. SYSTEM PERFORMANCE

A. Reconstruction Accuracy

Carrier design, data bandwidth, bandwidth allocation, channel
population, and channel unmixing all play a role in
reconstruction accuracy. Table 1 details the channel unmixing
performance. However, to evaluate the performance of an MPA
while taking bandwidth into account, we need to look further
than the equally weighted variance (EWV) dictated by Q * and

instead simulate how the MPA measures realistic data. Figure 2
shows the infrared hyperspectral imaging polarimeter (IHIP)
data we use for this exercise [30]. For 32 independent instan-
tiations of each noise level between 9 dB and 36 dB in mean
SNR, we perform two particle-swarm optimizations: (a) up-to-
sixteen  parameters {7, 71, 7, 73, €0, €1, €2, €3},  defining
filters to maximize DoP accuracy; (b) up-to-four parameters,
{70, €0},/4> defining filters to maximize s, accuracy. The s
and & subscripts denote side and baseband, respectively. The
distinction was only necessary for Bachman’s MPA, as its
Q" requires the use of both base and sideband channels to

reconstruct 5. All other MPAs isolate s, to the baseband, thus
resulting in fewer parameters to optimize over. We quantify
reconstruction accuracy with peak SNR (PSNR) [31], which
is related to mean squared error (MSE) as

Origin Size a b N CN 63123

T Q+

Bachman [22] 2x2 - - 1 3.23

Myhre [24] 2x2 - - 1 V3 1,

[N}
[N}
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This Work 2x4 1/2 1 1
This Work 2x10 3/5 1 1

This Work 3x3 2/3  2/3 1 2

Alenin [19] 2x2xN 1 1 3 V3
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3,6,14,14
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“CN is the condition number of the unit cell’s W. 63 , , 5 are the noise variances for each Stokes parameter from Q; their sum is an EWV. The circles represent the

polar form of the coefficients—the direction of the radius line contains the phase information as right =

+1,up = +j, left = 1, down = j. Empty circles indicate that

a given Stokes parameter does not map onto a given channel; an empty channel would be a vertical set of circles in QT and Q*; they are omitted for brevity.



Fig. 2. IHIP mid-wavelength infrared (MWIR) data, A = 3848 nm.
A, 5. B, DoP.

PSNR = 10 log,,(MAX?/MSE), (13)

where MAX = 1 for normalized sy and DoP. The respective r;
and ¢&; parameters define the Planck-taper filter for s;: unity near
the center, zero on the outside, and the falloff range;

1
l—i—exp(—lsir,-[ - —I—L])

r=€;71; r=r;

H(gr, <r<r)= (14)

The filters are centered around the corresponding delta
functions in Q. Figure 3 shows reconstructed and absolute er-

ror images for a single noise instantiation of the 32 that were
averaged to achieve the final accuracy results shown in Fig. 4.

For low SNRs, the optimized filters are narrow, thus limiting
the reconstruction quality by the CN of the DRM and the
EWYV of the channel structure. For higher SNRs, the optimized
filters widen to the point where the frequency content of a

ROI#1

So ,truth
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given Stokes parameter remains higher than the noise floor,
as well as the aliasing frequencies of adjacent channels.

B. Systematic Error

The effect that the noise floor and the channel proximity have
on the reconstruction accuracy achieved by each MPA is even
more evident when you consider systematic error. The analysis
is based on the same system evaluation function as the one used
in Section 3.A with the addition of imperfections to A of each
pixel and the corresponding change to Q. In principle, Q can

be adjusted both in terms of channel coefficients and introduc-
tion of new channels within the non-local reconstruction para-
digm. However, because of the latter effect’s overall negligible
contribution to channel crosstalk, it is not accounted for in the
reconstructions here. Further distinctions in the way of reintro-
ducing local reconstruction may be beneficial, but that discus-
sion is outside the scope of this work. For this exercise, we
perform 980 particle-swarm optimizations—DoP and s, recon-
structions for ten MPA configurations, as enumerated in
Table 2 and visualized in Fig. 5. We consider seven standard
deviation levels (1/8°, 1/4°, 1/2°, 1°, 2°, 4°, 8°) within two inde-
pendently introduced systematic error sources: (a) pixel-
independent angle and retardance; and (b) mask-correlated an-
gle and retardance. This distinction is introduced to study both
the effects of increasing of the noise floor [error source (a)], as
well as the introduction of unintended channels [error source
(b)]. Each optimizations function evaluation is a result of
the averaging of 25 noise instantiations and 25 systematic error

Fig. 3.
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N
o
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S
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(saturated at 0.02)
30dB 18 dB

12 dB

(saturated at 0.10)
18 dB

30 dB

Reconstructed images. Top two rows: the inside 2 x 2 grid shows the true s, and DoP; the outside shows the reconstructed s, and Dol at

SNR = 30 dB. Bottom six rows: absolute error between reconstructed images and truth. MPA labels and regions of interest (ROIs) are consistent

with Figs. 1 and 2, respectively.
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Fig. 4. Attainable reconstruction quality of MPAs shown in Fig. 1.

Table 2. MPA Error Enumeration®
MPA Configuration O:p Orr O1r Total
Bachman 1 4 1 1 6
Myhre 1 4 4 4 12
2x4 1 4 4 4 12
2 8 8 8 24
2x10 1 10 10 10 30
2 20 20 20 60
3x3 1 6 6 6 18
2 9 6 6 21
2x2x3 1 2 3 1 6
2 4 3 1 8

“The number of errors follows the number of uncertain parameters added by
each polarizer/retarder mask. Configurations are consistent with Fig. 5.

instantiations combined without permutations. In order to
speed up optimization convergence, we use the final parameter
sets of each MPA found in the previous section as the initial
population.

Because the 2 x 2 x 3 MPA is a multi-snapshot system, its
systematic errors were defined slightly differently. While, the
patterned linear polarizers’ errors were treated in the same
way, the rotating linear retarder errors were treated differently.
The retardance error was assumed constant for all three snap-
shots, while the orientation errors were treated as a combina-
tion of a constant offset and a snapshot-specific error. This is
done in parallel with the two dimensions of systematic error in
Fig. 6. Single instantiations of reconstruction residuals are pre-
sented in Fig. 7 for the cross-diagonal combinations of errors.

Table 2 presents the verbose list of error configurations.
Configuration 1 assumes the minimum number of lithographic
masks necessary, while Configuration 2 assumes that every pixel
within the MPA pattern has an independent selection of litho-
graphic masks. The effect of the former is that correlated
errors patterned over a detector lead to additional unintended

Research Article

CP || LP E P
wfu] [e]fe]  [efe]w]s]o o[ o ]]
LR; LRy LRy || LRy
LRg LRg || LR;
LPy || LP, LP; LPg || LP || LPg [| LPy
LPy || LP, LPg LPy |[LP, |[LP; [ LP,

same ' |

IR RE

£

LRs || LRg || LR7 || LRg
ol [l
EoEfeunn L

Fig. 5. MPA pixel configurations (letter indices are consistent with
Figs. 1 and 3). Pixel labels refer to the lithographic layers: L, linear; C,
circular; E, elliptical; P, polarizer; R, retarder; D, diattenuator. Each
polarization element’s subscript refers to the mask number from which
it is produced. Northeast and northwest background hashing refer to
Configurations 1 and 2, respectively.

channels, while the effect of the latter is a general increase in the
noise floor within the Fourier domain. Figure 6 shows the ef-
fects of the two types of systematic errors for each MPA. When
the systematic error is patterned, the empty channels shown in
Fig. 1 are populated with unintended information. Looking at
each MPA’s effective channel structure makes it obvious that
different MPAs will perform differently. Bachman’s and
Myhre’s MPAs do not have any empty channels, and, thus, pat-
terned systematic error is not expected to strongly affect the
reconstruction accuracy—each channel will simply contain a
slightly different linear combination of Stokes parameters.
This can be accounted for by altering Q. However, the other

four MPAs rely on precise carrier construction to create empty
channels. As a result, patterned errors will lead to crosstalk from
unintended channels.
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DoP PSNR (dB) 5o PSNR (dB)

Fig. 6. MPA reconstruction accuracy as a function of systematic error. The angle amounts represent the standard deviations of the Gaussian-
distributed perturbations added to the polarization element parameters implied by Table 2 and Fig. 5. The left dimension corresponds to random
contribution to every pixel, while the right dimension corresponds to a random contribution to a pixel type within the MPA pattern. The larger
marks on the cross-diagonal correspond to the combinations of random and patterned errors examined in Fig. 7.
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Fig. 7. Single instantiation reconstruction difference of Dol and s, from the 25 that were used in the systematic error analysis. Only seven of 49
error levels are shown—they form a cross-diagonal that trades off of the two error sources listed as (random systematic error, patterned systematic
error). The images shown are of ROI # 1 from Fig. 2 and are normalized to the same levels as indicated in Fig. 3. SNR level of 30 dB is assumed for
this exercise. MPA configurations are consistent with Table 2, Figs. 5 and 6.

4. DISCUSSION

A. Systematic Error-Free Case

As can be seen in Fig. 3, Bachman’s MPA provides the lowest
accuracy at all SNR levels, while Myhre’s MPA and the new
3 x 3 MPA perform similarly with the former performing better
in 5o and the latter performing better in DoP at higher SNRs.
Given that the 3 x 3 MPA introduces the extra need of partially
polarized pixels without bringing a sizable performance advan-
tage, it is of limited practical use. However, the negative result
quantifies that focusing on bandwidth alone is not sufficient.
Instead bandwidth and CN should be seen as equally important
concepts in predicting system performance. The modified 2 x L
MPAs vyield the best single-snapshot s, and DoP accuracy.
Higher L MPAs can extend s; and s, carriers further away
from the 5, carrier, and, because s is likely to be of higher band-
width than s5; and s, [19], the 2 x 10 MPA yields higher
reconstruction accuracy than the 2 x 4. However, for the foresee-
able future, the modified 2 x 4 MPA is likely to remain the most
manufacturable full-Stokes 2 x L MPA, as it only requires
four different types of linear polarizers and retarders. It is of par-
ticular significance that its layout and channel structure are a

combination of many separate elements: LeMaster and
Hirakawa’s micropolarizer orientations [18], Lukac’s overall car-
rier structure [20,32], and adapted Myhre’s linear retarder prop-
erties [24]. As the ability to apply many independent masks
becomes more feasible, the modified 2 x 10 MPA will be better
suited for typical polarization data. Finally, the 2 x 2 x 3 MPA
has once again shown that a multi-snapshot design has the
potential to deliver maximum bandwidth and reconstruction ac-
curacy. Unlike the 2 x 2 x 2 MPA that has a very implementable
ferroelectric liquid crystal rotator solution [19], the 2 x 2 x 3
MPA requires a more elaborate positioning of the retarder in
front. As a result, it is not clear how much of the predicted per-
formance will be obtainable. There are emerging technologies,
such as the liquid crystal photonic transducers [33,34], that
could pave the way for enabling this mult-snapshot design.
The performance of the 2 x 2 x 3 MPA strongly depends on
the successful implementation of the modulation design.

B. Non-zero Systematic Error Case

Under non-zero systematic error, Figs. 6 and 7 show that
Bachman’s and Myhre’s MPAs do not suffer much in terms
of DoP reconstruction accuracy, but do in terms of s,
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reconstruction accuracy. This is because the polarization chan-
nels are already multiplexed, and no unintended channels are
created through inclusion of systematic error. The baseband, on
the other hand, may start to include non-sy information leading
to an overall reduction in the s, reconstruction’s PSNR. The
2x4 MPA and the 2x10 MPA perform similarly, but,
counter-intuitively, the 2 x 10 MPA performs more gracefully
under systematic error. This is likely due to the fact that the
2 x 10 MPA has a greater number of pixel types, which implies
a lesser impact of any individual correlated error distribution of
one pixel type. This hypothesis is further supported by the fact
that Configuration 2 MPAs generally perform better than
Configuration 1 MPAs—correlated error is worse than inde-
pendent error. Finally, despite the fact that the 2 x 2 x 3 MPA’s
reconstruction performance degrades the most as systematic
error goes up, its performance never dips below the perfor-
mance of other MPAs.

5. CONCLUSION

In this paper, we have introduced two classes of full-Stokes
MPAs: the very promising modified 2 x L family, the largely un-
impressive 3 x 3 MPA, as well as revisiting the extremely well
performing 2 x 2 x 3 MPA. The former two are spatially chan-
neled polarimeters, whereas the latter is a hybrid temporally and
spatially channeled polarimeter. We systematically examined the
performance of these layouts and compared them with recently
demonstrated full-Stokes MPA designs from the literature. By
considering bandwidth along with SNR performance, the allo-
cation of system bandwidth can be controlled to better suit the
data at hand. Examining the new systems’ performance under
systematic error revealed their greater robustness. We further
demonstrated the potential advantage of multi-snapshot designs
that trade off spatial and temporal bandwidth to achieve even
better performance in terms of both noise and error resiliency.

Besides the results presented here, we have recently found
even more powerful ways of avoiding the emergence of unin-
tended channels due to the existence of systematic error [35].
All existing hybrid-domain polarimeters use separable modula-
tion strategies, where the modulation in the independent do-
mains is accomplished using separate optical elements. In a
non-separable system, an element such as a spatial light modu-
lator can be used to modulate in two domains simultaneously
in a way that is inseparably mixed. When this is the case, you no
longer need a combination of modulation carriers to design the
measurement’s Fourier domain. Instead, the desired informa-
tion-carrying channels can be located in arbitrary locations
in the frequency domain via a single carrier, thus obviating
the need for channel cancellation altogether. As further polari-
zation-selection-device advancements become available, these
techniques will enable additional gains through ensuring a
complete absence of unintended channels.
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