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ABSTRACT
While active polarimeters have been shown to be successful at improving discriminability of the targets of
interest from their background in a wide range of applications, their use can be problematic for cases with strong
bandwidth constraints. In order to limit the number of performed measurements, a number of successive studies
have developed the concept of partial Mueller matrix polarimeters (pMMPs) into a competitive solution. Like all
systems, pMMPs need to be calibrated in order to yield accurate results. In this treatment we provide a method
by which to select a limited number of reference objects to calibrate a given pMMP design. To demonstrate
the efficacy of the approach, we apply the method to a sample system and show that, depending on the kind of
errors present within the system, a significantly reduced number of reference objects measurements will suffice
for accurate characterization of the errors.

Keywords: Calibration, Polarimetry, Polarization, Partial Mueller Matrix, Optimization

1. INTRODUCTION
Because partial Mueller matrix polarimeters (pMMPs) are a rather new class of polarimeters,1,2 they have
not yet received enough attention in terms of having a rigorous and fully developed set of best-practices for
calibration. Virtually all of the previous polarimeter calibration treatments have focused on full polarimeters,3,4

which often have a very restricted set of measurements to accomplish well-conditioned results. A consequence of
that restriction is a presence of symmetries that allows for a simplified treatment of systems, and one example
of such simplification can be seen in Compain’s treatment.4 The fact that Compain’s treatment forced PSG
and PSA to have four unique states each for a total of 16 measurements, resulted in an elegant derivation that
achieved calibration with four reference objects. However, adapting Compain’s method to pMMPs is overly
constraining because the most effective pMMP designs rely on having additional degrees of freedom associated
with unique PSG–PSA measurement conditions.

In an earlier publication,5 we introduced a family of 10 classes of pMMPs as shown in Figure 1a. The pMMPs
were based on having three groups of measurements that guaranteed orthogonal additions to the system’s sensor
space, thereby maintaining the efficient property of the rank of the measurement matrix, 𝑅, equaling the number
of measurements made, 𝑁. After optimizing the newly introduced set of pMMP designs for the scene space
derived from data of Hoover and Tyo,1 a number of systems showed particularly enticing trade-offs. For that
task, it was shown that the optimized 422-pMMP reduced the number of measurements from 16 to eight, while
leaving the object-class separability essentially unchanged. The reconstructables matrix for that polarimeter can
be seen in Figure 1b.

1.1 Simplistic Polarimeter Calibration
First, examine the polarimetric measurement,

𝐼𝑛 = 𝐀T
𝑛 𝐌 𝐆𝑛 = 𝐃 ′T

𝑛 𝐌 ′, (1)
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(a) The 10 pMMP classes (b) Reconstructables matrix for 422

Figure 1: Polarimeters from Alenin and Tyo.5

where 𝐆𝑛 and 𝐀𝑛 are the PSG and PSA Stokes vectors, respectively, and

𝐃 ′
𝑛 = vec(𝐃𝑛) = vec(𝐀T

𝑛 𝐆𝑛) = 𝐀𝑛 ⊗ 𝐆𝑛, (2)
𝐌 ′ = vec(𝐌), (3)

with vec representing a row-by-row vectorization of a matrix. In some of our prior work, we used the primes to
denote this matrix-to-vector transformation to encourage a greater amount of attention paid towards the syntax.
In this instance, we will omit those primes to avoid every single matrix having one. Thereby, 𝐃 ′ = 𝐃 and
𝐌 ′ = 𝐌 . Once we group multiple measurements together, we arrive at the familiar expression,

𝐈 = 𝐖 𝐌. (4)

The simplest calibration process can be arrived at by blindly rearranging the expression as

𝐈 𝐌−1 = 𝐖. (5)

Obviously, we cannot uniquely invert a Mueller vector, 𝐌 . Instead we need to have multiple objects,

𝐑 = [ 𝐌1 𝐌2 ⋯ 𝐌𝐾 ] , (6)

and rewrite the problem for a set of reference objects,

𝐈 𝐑−1 = 𝐖. (7)

In this instance, 𝐖 can be calculated directly from the known reference objects and the polarimeter intensity
measurements. To accomplish this, 𝐑 has to be invertible and well conditioned, which means that we need at
least 16 reference objects. This simplistic approach treats 𝐖 as a black box and does not leverage significant
knowledge of what the measurements should be based on the system’s design. The following sections of this
paper will examine our ability to calibrate a polarimeter while taking measurements of the smallest possible
number of reference objects, 𝐾.

1.2 Polarimeters
In this study, we introduce a flexible method for calibration and use it on two systems in parallel: a) a full
16-measurement Mueller matrix polarimeter, and b) a partial 8-measurement Mueller matrix polarimeter. Both
have the same architecture in that their 𝐃 can be described with the following PSG and PSA

𝐌PSG = 𝐌LR (𝛿𝑔, 𝜙𝑔) 𝐌LD(𝑞𝑔, 𝑟𝑔, 𝜃𝑔), (8a)
𝐌PSA = 𝐌LR (𝛿𝑎, 𝜙𝑎) 𝐌LD(𝑞𝑎, 𝑟𝑎, 𝜃𝑎), (8b)
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Polarimeter Side 𝑞 𝑟 𝛿 𝜙 𝜃

Full

PSG 1.00 0.00 90.00∘
96.72∘ −14.71∘ 14.71∘ −50.25∘

96.72∘ −14.71∘ 14.71∘ −50.25∘

96.72∘ −14.71∘ 14.71∘ −50.25∘

96.72∘ −14.71∘ 14.71∘ −50.25∘

73.49∘ −25.74∘ 25.74∘ 16.51∘

73.49∘ −25.74∘ 25.74∘ 16.51∘

73.49∘ −25.74∘ 25.74∘ 16.51∘

73.49∘ −25.74∘ 25.74∘ 16.51∘

PSA 1.00 0.00 90.00∘
50.25∘ 50.25∘ 50.25∘ 50.25∘

−14.71∘ −14.71∘ −14.71∘ −14.71∘

36.76∘ 36.76∘ 36.76∘ 36.76∘

83.28∘ 83.28∘ 83.28∘ 83.28∘

73.49∘ 73.49∘ 73.49∘ 73.49∘

64.26∘ 64.26∘ 64.26∘ 64.26∘

25.74∘ 25.74∘ 25.74∘ 25.74∘

16.51∘ 16.51∘ 16.51∘ 16.51∘

422 pMMP
PSG 1.00 0.00 90.00∘ 32.13∘ 67.50∘ 22.52∘ −22.52∘

47.13∘ −42.87∘ 92.13∘ 2.13∘
−12.86∘ −67.50∘ −22.48∘ 22.48∘

47.13∘ 47.13∘ 2.13∘ 2.13∘

PSA 1.00 0.00 90.00∘ −26.61∘ −26.60∘ 63.41∘ 63.41∘

42.80∘ −47.20∘ 87.79∘ −2.02∘
108.26∘ 108.27∘ −71.72∘ −71.72∘

42.88∘ 42.88∘ −2.12∘ 87.88∘

Table 1: Idealized parameters for the two polarimeters. The angles, 𝜙 and 𝜃 are shown as a 4 × 4 and 2 × 4
matrix for compactness. For any given measurement, each sub-cell of 𝜙 corresponds to identically positioned
sub-cell of 𝜃. Note that these parameters were derived through an optimization process from 𝐖 matrices which
were calculated in an architecture-agnostic way. As a result, despite the fact that the optimization reached the
needed measurement matrices with acceptable convergence, slight numerical variations still exist.

where 𝐌LR and 𝐌LD are Mueller matrices for linear retarder and linear diattenuator, respectively. The PSG–
PSA measurement conditions combine to produce the net dyad product,

𝐃 = 𝐌T
PSA 𝐌PSG, (9)

which is then vectorized for construction of 𝐖 . With the architecture at hand, we can express both polarimeters
with a set of PSA and PSA parameters:

⃗𝜉𝑔 = { 𝑞𝑔 𝑟𝑔 𝛿𝑔
⃗𝜃𝑔

⃗𝜙𝑔 } , (10a)
⃗𝜉𝑎 = { 𝑞𝑎 𝑟𝑎 𝛿𝑎

⃗𝜃𝑎
⃗𝜙𝑎 } , (10b)

where 𝑞 and 𝑟 are the transmittances for the two orthogonal eigenpolarizations of the polarizer, 𝛿 is the retardance,
𝜙 is the orientation of the retarder and 𝜃 is the orientation of the polarizer. When expanded, we have a total
of 70 parameters describing our full Mueller matrix polarimeter, and 38 parameters describing our 422 pMMP.
The measurement matrices for both can be seen below:

𝐖 full
ideal =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.500 −0.289 0.188 0.363 −0.289 0.167 −0.108 −0.209 0.188 −0.108 0.070 0.136 −0.363 0.209 −0.136 −0.263
0.500 0.289 −0.363 0.188 −0.289 −0.167 0.209 −0.108 0.188 0.108 −0.136 0.070 −0.363 −0.209 0.263 −0.136
0.500 0.289 0.363 −0.188 −0.289 −0.167 −0.209 0.108 0.188 0.108 0.136 −0.070 −0.363 −0.209 −0.263 0.136
0.500 −0.289 −0.188 −0.363 −0.289 0.167 0.108 0.209 0.188 −0.108 −0.070 −0.136 −0.363 0.209 0.136 0.263
0.500 −0.289 0.188 0.363 0.289 −0.167 0.108 0.209 −0.363 0.209 −0.136 −0.263 −0.188 0.108 −0.070 −0.136
0.500 0.289 −0.363 0.188 0.289 0.167 −0.209 0.108 −0.363 −0.209 0.263 −0.136 −0.188 −0.108 0.136 −0.070
0.500 0.289 0.363 −0.188 0.289 0.167 0.209 −0.108 −0.363 −0.209 −0.263 0.136 −0.188 −0.108 −0.136 0.070
0.500 −0.289 −0.188 −0.363 0.289 −0.167 −0.108 −0.209 −0.363 0.209 0.136 0.263 −0.188 0.108 0.070 0.136
0.500 −0.289 0.188 0.363 0.289 −0.167 0.108 0.209 0.363 −0.209 0.136 0.263 0.188 −0.108 0.070 0.136
0.500 0.289 −0.363 0.188 0.289 0.167 −0.209 0.108 0.363 0.209 −0.263 0.136 0.188 0.108 −0.136 0.070
0.500 0.289 0.363 −0.188 0.289 0.167 0.209 −0.108 0.363 0.209 0.263 −0.136 0.188 0.108 0.136 −0.070
0.500 −0.289 −0.188 −0.363 0.289 −0.167 −0.108 −0.209 0.363 −0.209 −0.136 −0.263 0.188 −0.108 −0.070 −0.136
0.500 −0.289 0.188 0.363 −0.289 0.167 −0.108 −0.209 −0.188 0.108 −0.070 −0.136 0.363 −0.209 0.136 0.263
0.500 0.289 −0.363 0.188 −0.289 −0.167 0.209 −0.108 −0.188 −0.108 0.136 −0.070 0.363 0.209 −0.263 0.136
0.500 0.289 0.363 −0.188 −0.289 −0.167 −0.209 0.108 −0.188 −0.108 −0.136 0.070 0.363 0.209 0.263 −0.136
0.500 −0.289 −0.188 −0.363 −0.289 0.167 0.108 0.209 −0.188 0.108 0.070 0.136 0.363 −0.209 −0.136 −0.263

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11a)

𝐖422
ideal =

⎡
⎢
⎢
⎢
⎣

0.500 0.000 0.000 0.500 0.002 0.000 0.000 0.002 0.001 0.000 0.000 0.001 0.500 0.000 0.000 0.500
0.500 −0.000 −0.000 −0.500 0.002 −0.000 −0.000 −0.002 0.001 −0.000 −0.000 −0.001 0.500 −0.000 −0.000 −0.500
0.500 0.000 0.000 0.500 −0.002 −0.000 −0.000 −0.002 −0.001 −0.000 −0.000 −0.001 −0.500 −0.000 −0.000 −0.500
0.500 −0.000 −0.000 −0.500 −0.002 0.000 0.000 0.002 −0.001 0.000 0.000 0.001 −0.500 0.000 0.000 0.500
0.500 −0.037 0.499 −0.000 0.037 −0.003 0.037 −0.000 0.499 −0.037 0.498 −0.000 −0.001 0.000 −0.001 0.000
0.500 0.037 −0.499 0.000 −0.037 −0.003 0.037 −0.000 −0.499 −0.037 0.498 −0.000 0.001 0.000 −0.001 0.000
0.500 −0.499 −0.037 0.000 −0.499 0.498 0.037 −0.000 0.037 −0.037 −0.003 0.000 0.002 −0.002 −0.000 0.000
0.500 0.499 0.037 −0.000 0.499 0.498 0.037 −0.000 −0.037 −0.037 −0.003 0.000 −0.002 −0.002 −0.000 0.000

⎤
⎥
⎥
⎥
⎦

(11b)

Table 1 details the ideal parameters for both polarimeters.
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2. TECHNIQUE
The technique outlined in this paper assumes that the design of the polarimeter is known and is not treated as
a black box. This is a reasonable assumption to make since the calibration process is often done at instrument’s
construction. Here, we treat the polarimeter as an idealized set of parameters that define the measurement
matrix, 𝐖 . Those parameters are then deviated from their ideal values, ⃗𝜉ideal, to their true values, ⃗𝜉true. The
calibration is then a process of finding a calibrated set of parameters, ⃗𝜉cal, which approximates ⃗𝜉true. Provided
that the system is constructed well, the ideal parameters should be pretty close to true values, allowing us to
limit the search space. This is akin to other treatments.6–8 We can redefine the process in terms of errors (or
offsets):

⃗𝜉ideal → 𝐖 ideal (12a)
⃗𝜉ideal + (Δ ⃗𝜉)true → 𝐖 true (12b)
⃗𝜉ideal + (Δ ⃗𝜉)cal → 𝐖cal (12c)

In order to evaluate the proximity of the calibrated matrix to the true matrix, we use the Frobenius norm of the
difference between what the calibrated polarimeter reconstructs and what it should reconstruct,

𝜀 = ∣∣𝐖+
cal 𝐖 true 𝐑⏟

𝐈

−𝐖+
true 𝐖 true 𝐑⏟

𝐈

∣∣
Fro

. (13)

Essentially, Eq. (??) adds up ∑𝐑 |𝑚measured
𝑖𝑗 − 𝑚should be

𝑖𝑗 |2 without any preferential weighting. Thought one
might be eager to simplify away the 𝐖+

true 𝐖 true term, it is necessary to provide pMMP-element-masking that
ensures that only the reconstructable Mueller elements of 𝐑 are included within the metric.

3. EXAMPLE
3.1 Reference Objects
To demonstrate this method, we use a reference object comprised of a linear polarizer sandwiched between two
retarders,

𝐌 ref = 𝐌LR(𝛿2, 𝜙2)𝐌LP(𝜃)𝐌LR(𝛿1, 𝜙1), (14)

the vectorized version of which is

𝐌 ref = 1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
c(2𝜃)(c(2𝜙1)2 + c(𝛿1)s(2𝜙1)2) − c(2𝜙1)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1)
s(2𝜃)(c(𝛿1)c(2𝜙1)2 + s(2𝜙1)2) − c(2𝜙1)c(2𝜃)s(2𝜙1)(c(𝛿1) − 1)

c(2𝜙1)s(2𝜃)s(𝛿1) − c(2𝜃)s(2𝜙1)s(𝛿1)
c(2𝜃)(c(2𝜙2)2 + c(𝛿2)s(2𝜙2)2) − c(2𝜙2)s(2𝜙2)s(2𝜃)(c(𝛿2) − 1)

(c(2𝜃)2(c(2𝜙1)2 + c(𝛿1)s(2𝜙1)2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))(c(2𝜙2)2 + c(𝛿2)s(2𝜙2)2) − c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)s(2𝜃)(c(2𝜙1)2 + c(𝛿1)s(2𝜙1)2) − c(2𝜙1)s(2𝜙1)s(2𝜃)2(c(𝛿1) − 1))
(c(2𝜃)s(2𝜃)(c(𝛿1)c(2𝜙1)2 + s(2𝜙1)2) − c(2𝜙1)c(2𝜃)2s(2𝜙1)(c(𝛿1) − 1))(c(2𝜙2)2 + c(𝛿2)s(2𝜙2)2) − c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(s(2𝜃)2(c(𝛿1)c(2𝜙1)2 + s(2𝜙1)2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))

−(c(2𝜃)2s(2𝜙1)s(𝛿1) − c(2𝜙1)c(2𝜃)s(2𝜃)s(𝛿1))(c(2𝜙2)2 + c(𝛿2)s(2𝜙2)2) − c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜙1)s(2𝜃)2s(𝛿1) − c(2𝜃)s(2𝜙1)s(2𝜃)s(𝛿1))
s(2𝜃)(c(𝛿2)c(2𝜙2)2 + s(2𝜙2)2) − c(2𝜙2)c(2𝜃)s(2𝜙2)(c(𝛿2) − 1)

(c(2𝜃)s(2𝜃)(c(2𝜙1)2 + c(𝛿1)s(2𝜙1)2) − c(2𝜙1)s(2𝜙1)s(2𝜃)2(c(𝛿1) − 1))(c(𝛿2)c(2𝜙2)2 + s(2𝜙2)2) − c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)2(c(2𝜙1)2 + c(𝛿1)s(2𝜙1)2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))
(s(2𝜃)2(c(𝛿1)c(2𝜙1)2 + s(2𝜙1)2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))(c(𝛿2)c(2𝜙2)2 + s(2𝜙2)2) − c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)s(2𝜃)(c(𝛿1)c(2𝜙1)2 + s(2𝜙1)2) − c(2𝜙1)c(2𝜃)2s(2𝜙1)(c(𝛿1) − 1))

(c(2𝜙1)s(2𝜃)2s(𝛿1) − c(2𝜃)s(2𝜙1)s(2𝜃)s(𝛿1))(c(𝛿2)c(2𝜙2)2 + s(2𝜙2)2) + c(2𝜙2)s(2𝜙2)(c(𝛿2) − 1)(c(2𝜃)2s(2𝜙1)s(𝛿1) − c(2𝜙1)c(2𝜃)s(2𝜃)s(𝛿1))
c(2𝜃)s(2𝜙2)s(𝛿2) − c(2𝜙2)s(2𝜃)s(𝛿2)

−c(2𝜙2)s(𝛿2)(c(2𝜃)s(2𝜃)(c(2𝜙1)2 + c(𝛿1)s(2𝜙1)2) − c(2𝜙1)s(2𝜙1)s(2𝜃)2(c(𝛿1) − 1)) + s(2𝜙2)s(𝛿2)(c(2𝜃)2(c(2𝜙1)2 + c(𝛿1)s(2𝜙1)2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1))
−c(2𝜙2)s(𝛿2)(s(2𝜃)2(c(𝛿1)c(2𝜙1)2 + s(2𝜙1)2) − c(2𝜙1)c(2𝜃)s(2𝜙1)s(2𝜃)(c(𝛿1) − 1)) + s(2𝜙2)s(𝛿2)(c(2𝜃)s(2𝜃)(c(𝛿1)c(2𝜙1)2 + s(2𝜙1)2) − c(2𝜙1)c(2𝜃)2s(2𝜙1)(c(𝛿1) − 1))

−c(2𝜙2)s(𝛿2)(c(2𝜙1)s(2𝜃)2s(𝛿1) − c(2𝜃)s(2𝜙1)s(2𝜃)s(𝛿1)) − s(2𝜙2)s(𝛿2)(c(2𝜃)2s(2𝜙1)s(𝛿1) − c(2𝜙1)c(2𝜃)s(2𝜃)s(𝛿1))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)

where c(𝑥) = cos(𝑥) and s(𝑥) = sin(𝑥). Each non-𝑚00 Mueller element of that vector has sinusoidal varia-
tions, meaning that given appropriate selections for the various parameters, every polarization-element can be
“scanned”. For these reference objects, the optimization has access to a limited surface of the Mueller matrix
space—non-depolarizing diattenuators. For this exercise, we pre-calculated a CN = 3 matrix of 16 reference
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Error Calibration A Calibration B Calibration C
Δ𝑞 [−0.1, 0.0] [−0.1, 0.0] [−0.1, 0.0]
Δ𝑟 [ 0.0, 0.1] [ 0.0, 0.1] [ 0.0, 0.1]
Δ𝛿 [−18∘, 18∘] [−18∘, 18∘] [−18∘, 18∘]
Δ𝜃 [−18∘, 18∘] [−18∘, 18∘] –
Δ𝜙 [−18∘, 18∘] [−18∘, 18∘] –
Δ𝑓𝜃 – [−0.1, 0.1] –
Δ𝑓𝜙 – [−0.1, 0.1] –

Δ𝜃𝑖 – – 𝑁 × [−18∘, 18∘]
Δ𝜙𝑖 – – 𝑁 × [−18∘, 18∘]

Effect on 𝜃 𝜃cal
𝑖 = 𝜃ideal

𝑖 + Δ𝜃 𝜃cal
𝑖 = (1 + Δ𝑓𝜃)𝜃ideal

𝑖 + Δ𝜃 𝜃cal
𝑖 = 𝜃ideal

𝑖 + Δ𝜃𝑖
Effect on 𝜙 𝜙cal

𝑖 = 𝜙ideal
𝑖 + Δ𝜙 𝜙cal

𝑖 = (1 + Δ𝑓𝜙)𝜙ideal
𝑖 + Δ𝜙 𝜙cal

𝑖 = 𝜙ideal
𝑖 + Δ𝜙𝑖

Total Number 10 14 6 + 4𝑁
Table 2: Verbose description of the error sets considered in this study. Error set A has a single error for each
of the five parameters on PSG and PSA sides, with each orientation angle (𝜃 and 𝜙) assumed to have the same
offset for each measurement. Error set B has the same offsets, but adds an additional spin-rate error. Error set
C presents the most difficult scenario where for each of the 𝑁 measurements the orientation angles are assumed
to have an independent error.

objects,

𝐑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
−0.289 0.289 0.289 −0.289 −0.289 −0.289 −0.289 −0.289 0.289 0.289 0.289 0.289 0.289 0.289 −0.289 −0.289
−0.188 −0.363 −0.363 −0.188 0.188 0.188 0.188 0.188 0.363 0.363 −0.363 0.363 0.363 −0.363 −0.188 −0.188

0.363 −0.188 −0.188 0.363 −0.363 −0.363 −0.363 −0.363 0.188 0.188 −0.188 0.188 0.188 −0.188 0.363 0.363
−0.289 0.289 −0.289 0.289 −0.289 −0.289 0.289 0.289 −0.289 0.289 0.289 −0.289 0.289 −0.289 0.289 −0.289

0.167 0.167 −0.167 −0.167 0.167 0.167 −0.167 −0.167 −0.167 0.167 0.167 −0.167 0.167 −0.167 −0.167 0.167
0.108 −0.209 0.209 −0.108 −0.108 −0.108 0.108 0.108 −0.209 0.209 −0.209 −0.209 0.209 0.209 −0.108 0.108

−0.209 −0.108 0.108 0.209 0.209 0.209 −0.209 −0.209 −0.108 0.108 −0.108 −0.108 0.108 0.108 0.209 −0.209
−0.188 −0.363 −0.188 0.363 0.188 −0.188 −0.363 0.363 −0.188 0.363 0.363 0.188 −0.363 0.188 −0.363 0.188

0.108 −0.209 −0.108 −0.209 −0.108 0.108 0.209 −0.209 −0.108 0.209 0.209 0.108 −0.209 0.108 0.209 −0.108
0.070 0.263 0.136 −0.136 0.070 −0.070 −0.136 0.136 −0.136 0.263 −0.263 0.136 −0.263 −0.136 0.136 −0.070

−0.136 0.136 0.070 0.263 −0.136 0.136 0.263 −0.263 −0.070 0.136 −0.136 0.070 −0.136 −0.070 −0.263 0.136
−0.363 0.188 −0.363 −0.188 0.363 −0.363 0.188 −0.188 −0.363 −0.188 −0.188 0.363 0.188 0.363 0.188 0.363

0.209 0.108 −0.209 0.108 −0.209 0.209 −0.108 0.108 −0.209 −0.108 −0.108 0.209 0.108 0.209 −0.108 −0.209
0.136 −0.136 0.263 0.070 0.136 −0.136 0.070 −0.070 −0.263 −0.136 0.136 0.263 0.136 −0.263 −0.070 −0.136

−0.263 −0.070 0.136 −0.136 −0.263 0.263 −0.136 0.136 −0.136 −0.070 0.070 0.136 0.070 −0.136 0.136 0.263

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (16)

the dyad products of which can be visualized as every combination of tetrahedron-in-𝐆 and tetrahedron-in-𝐀
matched together. This construction guaranteed that by randomly drawing 𝐾 objects, the condition number of
the cropped 𝐑 would be sufficiently low, while the randomness was not significant enough when a large number
of instantiations was considered. Another reason for this selection of the reference object is the fact that there
exist high-precision options for both linear retarders (Fresnel rhombs) and linear polarizers (Wollaston prisms).

3.2 Error sets
Looking at Eqs. (10a) and (10b), there are five kinds of parameters within PSG and PSA (𝑞, 𝑟, 𝛿, 𝜃, 𝜙), with
each one carrying a possible error. In this study we looked at three different ways of how those errors might
apply. We refer to them as Calibration A, B, and C arranged in the order of increasing complexity. Table 2
summarizes those error structures and the prescribes the search range that was used within the optimization.

In addition to errors within the polarimeter, we also consider errors within reference objects themselves. To
do that, we further distinguish between 𝐑 ideal and 𝐑 true. For the generation of 𝐑 true, we add Gaussian noise
of a given standard deviation to only the orientations of the linear polarizer and the linear retarder. Thus, we
rewrite the metric as,

𝜀 = ∣∣𝐖+
cal 𝐖 true 𝐑 ideal − 𝐖+

true 𝐖 true 𝐑 true∣∣
Fro

. (17)
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In this optimization, there are two sources of randomness: a) the selected reference object set, and b) the precision
to which the orientations within that reference object are known. Performing a large number of instantiations
and averaging the results will reveal the underlying trend.

4. RESULTS
To demonstrate the approach, we ran optimizations for both the full polarimeter of Eq. (11a) and the pMMP of
Eq. (11b) under error sets A, B and C detailed in Table 2 with 1 ≤ 𝐾 ≤ 16 reference objects and 50 instantiations.
Those results were averaged across those instantiations and are reported in Figs. 2–4. The results show that in all
cases, fewer-than-16 reference objects are required to calibrate the system. The full polarimeter can be calibrated
with seven, three and two, while the pMMP can be calibrated with three, one and one reference objects for error
sets A, B and C, respectively.

5. CONCLUSION
In this paper, we showed that we can enumerate and estimate errors within the full Mueller matrix polarimeters,
as well as pMMPs. In each calibration scenario it was shown that fewer-than-16 reference objects are required.
One particularly interesting result was for pMMP calibrations under scenarios A and B, where one could say
that as few as one or two reference object measurements may be enough. This is due to the fact that pMMPs
have a smaller sensor space, and are thus more constrained - requiring fewer reference objects as a result.

It is important to stress that this work only makes claims as to the lower bound of the polarimetric component
of the laborious calibration process of a system-at-large. No claims are made in regard to photometric or spectral
components of calibration. Those will considerations will have to be added on top of the limits presented here.

This work has a number of possible future continuations, such as exploring different error sources, adding
intrinsic treatment of wavelength dependence, extending reference object library to beyond diattenuators, and
most intriguingly, investigating how this analysis can be applied to channeled systems under the 𝐐 formalism.9
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Figure 2: Calibration A
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Figure 3: Calibration B
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Figure 4: Calibration C
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