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ABSTRACT

The MCAO Assisted Visible Imager and Spectrograph (MAVIS) is currently in preliminary design for the ESO
VLT in Chile, and is set to deliver diffraction limited science in V-band over a wide (30”x30”) field of view. In
order for MAVIS to capitalise on its high angular resolution over a large science field, a sensitive astrometric
calibration process will be employed. The stringent requirements on this calibration process require the devel-
opment of an astrometric calibration technique which is insensitive to manufacturing errors in the calibration
mask, while still able to detect a broad range of distortions present in the MAVIS optical path. We derive one
such calibration method along with simulations in the MAVIS context, using the open-source MAVISIM tool
with realistic errors present.
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1. INTRODUCTION

MAVIS1 will provide wide-field (30×30 arcsec) images in V-band, sampled on a 4k×4k detector at 7.36 milliarcsec
per pixel, fully utilising the ESO VLT’s 8 metre aperture. In order to capitalise on this performance, MAVIS
will deliver a post-calibration astrometric accuracy of:

• better than 150 microarcsec (goal of 50 microarcsec) for any objects separated by less than 1 arcsec (i.e.,
relative astrometric accuracy), and

• better than 2 milliarcsec (0.4 milliarcsec goal) for any object in the field (i.e., absolute astrometric accuracy).

In order to reach these astrometric requirements∗, MAVIS will need to self-calibrate any residual distortions
introduced by its own optical components, down to a tighter tolerance than those set by the requirements.

Astrometric calibration has been performed using on-sky data for a number of other instruments, including
GEMS2 and Hubble’s WFPC2.3 In these cases, distortions are classified using observations of star clusters. For
GeMS, the prior knowledge of position of reference stars in the cluster is used to solve a least squares optimisation,
ultimately delivering the distortion field as a set of coefficients of a set of basis functions. In the case of WFPC2,
many dithered exposures of a cluster were taken, allowing the distortions to be reconstructed without precise
prior knowledge of the reference star positions. These methods are both limited by the availability of appropriate
star clusters on-sky, and the fact that the calibration process is not a controlled aspect of the instrument itself.

Another method of self-calibration is to include a removable calibration mask at a focal-plane before the
entrance of an instrument, then measure the distortions as they appear from the science detector plane (e.g., using
the science imager). By accurately knowing the positions of the calibration sources in the mask beforehand, it is

Send correspondence to Jesse Cranney, e-mail: jesse.cranney@anu.edu.au
∗These requirements are only active when enough reference stars are available to calibrate plate scale and rotation.
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possible to directly measure the field distortions introduced by the instrument. This is the method proposed for
MICADO by Rodeghiero et al.4 One drawback of this method is that the calibration mask must be manufactured
to prohibitively difficult tolerances, as is concluded in Ref. 4.

In this paper, we discuss the details of a novel differential astrometric calibration procedur proposed for the
MAVIS instrument, which utilises a calibration mask (as in MICADO), but allows relaxation of the tolerancing
in the pinhole positions within the mask. In Section 2, we present the motivation and methodology behind our
method. In Section 3, we give end-to-end simulation results verifying approach. In Section 4, we discuss the
simulation results and propose future work to be done in the context of MAVIS astrometric calibration.

2. DIFFERENTIAL METHOD

2.1 Concept and Terminology

Firstly, a brief note on terminology; The distortion field we wish to identify is a vector valued function of x and
y, d : R2 → R2. Without loss of generality, we can decompose the vector-valued distortion field, d, into its x
and y distortion components, i.e., dx : R2 → R and dy : R2 → R, such that:

d(p) = ⟨dx(p), dy(p)⟩ (1)

Note that we use boldface Latin variables for vectors, capital Latin variables for matrices, and lowercase (un-
bolded) Latin variables for scalars. In this paper, we aim to recover the partial derivatives of each component of
the distortion field with respect to x and y. The full set of partial derivatives we are interested in is:

∂dx
∂x

,
∂dx
∂y

,
∂dy
∂x

,
∂dy
∂y

, (2)

which when arranged into a matrix, form the Jacobian of the distortion:

J ≜

[
∂dx

∂x
∂dx

∂y
∂dy

∂x
∂dy

∂y

]
=

[
∇Tdx
∇Tdy

]
(3)

where ∇ is the gradient operator. Knowing the Jacobian of the distortion defines the distortion down to a set of
constants. Those constants, in this case, are the global tip and tilt distortions, i.e., a constant offset in x and y
across the field (which we do not aim to identify, as it does not impact the astrometric performance).

2.2 Measuring the Distortion Jacobian

The differential method of astrometric calibration aims to identify the Jacobian of the distortion field (or indeed,
the gradient of the x and y components of the distortion field), rather than the distortion field itself.

In practice, this is performed by taking multiple exposures of a calibration mask, where the calibration mask is
shifted slightly between each exposure. The measured difference in position compared to the expected difference
in position gives an indication of the Jacobian of the distortion field near the pinhole position.

Formally, we can let the precise position of the pinholes in the calibration mask be:

pi = ⟨xi, yi⟩, (4)

for i ∈ [1, 2, ..., Npinholes]. This is related to the nominal position of the pinholes, p̂i, by:

pi = p̂i + vi, (5)

where vi is the unknown error in pinhole position caused by, e.g., manufacturing errors, thermal fluctuations,
etc..

Now, the observed position, qi, of the pinhole through an optical system is defined as the true position, pi,
perturbed by some distortion di, as well as some measurement error, wi (due to, e.g., centroiding error):

qi ≜ pi + di +wi. (6)
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Here, di is a sample of the continuous distortion field, d : R2 → R2, at the true pinhole position, i.e.,

di = d(pi) = ⟨dx(xi, yi), dy(xi, yi)⟩. (7)

An absolute astrometric calibration process would aim to form an estimate, d̂, of the distortions from the
measured positions, qi, compared to the assumed/ideal positions, denoted p̂i:

d̂i = qi − p̂i

= qi − pi + vi

= di + vi +wi, (8)

which results in an error in distortion measurements exactly equal to the error in the pinhole positions, vi, plus
the centroiding error, wi, exactly as one would expect.

For a differential method, we propose that one should make several observations of pinhole positions after
shifting the calibration mask by a known amount. For simplicity, we will assume that exactly three shifts are
applied and corresponding measurements are taken, though the method is generalisable to more measurements.
The three sets of measurements are:

(i) q0
i , the reference measurement (with no shifts applied),

(ii) qx
i , a measurement after a shift in the x-direction, and

(iii) qy
i , a measurement after a shift in the y-direction.

That is,

q0
i = pi + d(pi) +w0

i (9)

qx
i = pi + sx + d(pi + sx) +wx

i (10)

qy
i = pi + sy + d(pi + sy) +wy

i (11)

where:

sx ≜ ⟨∆x, 0⟩ (12)

sy ≜ ⟨0,∆y⟩ (13)

In order to estimate the Jacobian of the distortion field, one can make the approximation:

Ji ≜ J|p=pi ≈ Ĵi ≜

[
(qx

i − q0
i − sx) · ex/∆x (qx

i − q0
i − sx) · ey/∆x

(qy
i − q0

i − sy) · ex/∆y (qy
i − q0

i − sy) · ey/∆y

]
(14)

where ex and ey are the basis vectors in the x and y dimensions, respectively. Examining only the first element
of the estimated Jacobian for demonstrative purposes:

∂̂dx
∂x

∣∣∣∣∣
p=p̂i

=
(qx

i − q0
i − sx) · ex
∆x

(15)

=
(d(pi + sx)− d(pi) +wx

i −w0
i ) · ex

∆x
, (16)

=

(
d(pi + sx)− d(pi)

∆x

)
· ex︸ ︷︷ ︸

→ ∂dx
∂x |

p=pi
, as ∆x→0

+

(
wx

i −w0
i

∆x

)
· ex, (17)
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one can see that as ∆x → 0, the first term in Eqn. (17) tends to be the exact entry of the true Jacobian, while
simultaneously, the second term tends to infinity. This reveals that there is a clear trade-off between accuracy
of the Jacobian in this formalism, and the measurement error of the pinhole positions (e.g., centroiding error).
Note however that the pinhole position error, vi, does not enter this relationship. The only impact of vi on
the Jacobian estimation is that the Jacobian is in fact being sampled at a slightly displaced position than the
nominal position; The Jacobian estimate is at pi = p̂i + vi, but we assume that that it is at the ideal pinhole
positions, p̂i. Assuming that d(pi) ≈ d(p̂i), then this will not have any significant impact on the distortion
recovery.

2.3 Estimating the Distortion

After the Jacobian has been sampled across the field, the remaining task is to determine a set of distortions that
are compatible with the measured Jacobian samples. For this, we require a set of differentiable basis functions,
fn(p), gn(p), n ∈ [1, 2, . . . , N ], and assume that the distortion field is the linear combination of these basis
functions:

dx(p) =

N∑
n=1

anfn(p), (18)

dy(p) =

N∑
n=1

bngn(p). (19)

The Jacobian at a point pi is then:

Ji =

[ ∑N
n=1 an

∂fn
∂x (pi)

∑N
n=1 an

∂fn
∂y (pi)∑N

n=1 bn
∂gn
∂x (pi)

∑N
n=1 bn

∂gn
∂y (pi)

]
, (20)

which can be flattened into a column vector, in order to form the ensuing least-squares regression problem:

zi ≜ vec(Ji), (21)

=


∑N

n=1 an
∂fn
∂x (pi)∑N

n=1 bn
∂gn
∂x (pi)∑N

n=1 an
∂fn
∂y (pi)∑N

n=1 bn
∂gn
∂y (pi)

 , (22)

=


∂f1
∂x (pi)

∂f2
∂x (pi) · · · ∂fN

∂x (pi) 0 0 · · · 0

0 0 · · · 0 ∂g1
∂x (pi)

∂g2
∂x (pi) · · · ∂gN

∂x (pi)
∂f1
∂y (pi)

∂f2
∂y (pi) · · · ∂fN

∂y (pi) 0 0 · · · 0

0 0 · · · 0 ∂g1
∂y (pi)

∂g2
∂y (pi) · · · ∂gN

∂y (pi)


︸ ︷︷ ︸

Di



a1
a2
...

aN
b1
b2
...
bN


︸ ︷︷ ︸

u

. (23)

Then, in a similar fashion, one can define the vectorised estimated Jacobian at the same point as:

ẑi = vec(Ĵi) (24)

=


(qx

i − q0
i − sx) · ex/∆x

(qy
i − q0

i − sy) · ex/∆y
(qx

i − q0
i − sx) · ey/∆x

(qy
i − q0

i − sy) · ey/∆y

 . (25)
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Now we can formulate an optimisation problem to fit the observed Jacobian samples to the true Jacobian
samples as a function of the linear combination coefficients:

cost ≜
Npinholes∑

i=1

∥ẑi − zi∥2, (26)

=

Npinholes∑
i=1

∥ẑi −Diu∥2, (27)

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥


ẑ1
ẑ2
...

ẑNpinholes


︸ ︷︷ ︸

ẑ

−


D1

D2

...
DNpinholes


︸ ︷︷ ︸

D

u

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

, (28)

= ∥ẑ−Du∥2 , (29)

where ∥ · ∥ is the Euclidean-norm operator. This cost function is minimised by:

û = argminu (cost) =
(
DTD

)−1
DTẑ, (30)

assuming DTD is positive definite (which can be guaranteed by choice of pinhole positions and basis functions).

So, given the Jacobian measurements, ẑ, it is possible to estimate the distortion field basis function coefficients,
ẑ. Note that the inversion in Eqn. (30) only needs to be computed once per system geometry (pinhole positions
and choice of basis functions), and then can be reused for all future observations.

2.4 Distortion Basis Functions

As mentioned in Section 2.3, the distortion field is assumed to be a linear combination of differentiable basis
functions. For this paper, we use a set of bi-variate homogeneous polynomials for the distortion basis functions,
of the form:

pn,m(x, y) =
1

n!
xn−mym (31)

where m ∈ [0, 1, · · · , n], n ∈ [0, 1, · · · , Norder], and Norder determines the largest exponent seen in the basis
functions. The factor of 1/n! is included to improve the conditioning of DTD in Eqn. (30). For this choice of
basis, there are:

N =
(Norder + 1)(Norder + 2)

2
− 1

unique polynomial functions. This includes the removal of the constant term, so that the minimum polynomial
order is 1. It can be shown that using the method described above, there is no information about the constant
value, and as such, it cannot be included in the estimation process. In fact, since all derivatives of this function
are precisely equal to 0, the corresponding columns of D would also be zero, guaranteeing that DTD is not
positive-definite.

It is not clear if this choice of polynomial functions is optimal. In fact, the Legendre polynomials have been
observed to be more stable in distortion identification.2,5 Alternative basis functions will be explored in the
development of the MAVIS calibration unit.
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3. SIMULATIONS

In order to validate the proposed astrometric calibration process, simulations were developed, based on (and now
included in) the MAVIS image simulator, MAVISIM.6 These simulations were designed with speed in mind, in
order to rapidly evaluate different system parameters, noise characteristics, and distortion inputs. As such, they
assume that the pinhole positions and centroiding error follow Gaussian statistics, that is:

vi ∼ N
([

0
0

]
,

[
σ2
v 0
0 σ2

v

])
, (32)

wi ∼ N
([

0
0

]
,

[
σ2
w 0
0 σ2

w

])
. (33)

The distortion fields were generated using statistical methods based on the MAVIS design, as presented in a
companion paper by Greggio et al.7 Then, the process described in Section 2 is executed for particular choices
of:

• Calibration mask shift (∆x,∆y) of 0.2 arcsec (∼0.12 mm),

• Polynomial maximum order (Norder) of 6.

• Pinhole position error (vi) of 0.2 arcsec (∼0.12 mm),

• Centroid measurement error (wi) of 10 microarcsec (∼5.8 microns),

The first two terms (shift size and polynomial order) were found to give stable results, but are not precisely
optimised. The last two terms (pinhole position and centroid accuracy) are based on conservative estimates
given the MAVIS design.

By choosing appropriate values of these parameters, we were able to verify the ability of the differential
astrometric calibration method to identify distortions to a very high precision (when average field tip-tilt is
removed, since they are not in the astrometric error budget). We show that for a typical MAVIS distortion field,
we are able to reduce the field distortions to below the required astrometric requirement levels. Figure 1 shows
the simulated field distortions before and after calibration using the differential astrometric calibration method.

This gives a good indication of the performance of the method proposed in this paper, but it does not directly
inform the astrometric requirements of MAVIS. For that, we simulate a large number of random objects in the
MAVIS field-of-view, and determine the astrometric error of these objects when subject to the post-calibration
residual distortions. Figure 2 shows the results.

For the relative astrometric accuracy, we appear to always satisfy the requirements (150 microarcsec for
objects ≤1 arcsec apart), but not always the goal (50 microarcsec for objects ≤1 arcsec apart). For the absolute
astrometric accuracy, we appear to always satisfy the requirements (2 milliarcsec anywhere in the field), and
almost always satisfy the goal (0.4 milliarcsec anywhere in the field).

In the companion paper, Ref. 7, distortion calibration was investigated using the method described in this
paper, and with some finer tuning than presented here, the MAVIS distortion field was able to be reduced to
66 microarcsec RMS over the MAVIS field of view (30 arcsec diameter disc). In that paper, the impact of
using different polynomial orders was investigated, and it was concluded that for the homogeneous bi-variate
polynomials described in Section 2.4 of this paper, Norder = 11 polynomials produced the best distortion fit.

Additionally, to verify the entire pipeline, an end-to-end simulator was developed (not included in MAVISIM).
This tool generates images on a simulated CCD with realistic detector noise, then performs the entire pipeline
of windowing, centroiding, and distortion fitting. As suspected, this simulation produced results very similar to
those found in the simulation described above, albeit at a much longer execution time. An example calibration
mask image generated in this simulation is shown in Fig. 3.

One critical aspect which is currently missing from these simulations is uncertainty in the shifting amount,
∆x,∆y. We have performed initial investigations on this aspect, but will present the results in future work. Our
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Figure 1. Simulated field distortions of MAVIS (red arrows), fitted distortions of MAVIS using the differential astrometric
calibration method (blue arrows), residual distortion of MAVIS after calibration (green arrows). Note that the arrow
scaling is different between the two plots.

Figure 2. Expected post-calibration MAVIS astrometric performance with respect to MAVIS requirements. For the
relative astrometric performance (left), no points should lie above the horizontal lines (to the left of the vertical line). For
the absolute astrometric performance (right), no points should lie above the horizontal lines at any separation.

preliminary conclusions are that knowledge of the shifts is crucial for recovering plate-scale distortion modes,
but when plate-scale distortion identification is not required (e.g., the MAVIS astrometric requirements, which
specify the presence of on-sky reference stars to calibrate plate-scale) the knowledge of the shifts is not required.
This is because the average shift of the measured pinhole positions can be assumed to be the shifting amount
which allows for very accurate knowledge of the shifting amount, at the cost of removing any impact of plate-
scale on the measured positions (since plate-scale has the effect of scaling the measured coordinates as a linear
function of the field coordinates).
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Figure 3. Simulated calibration mask (left), and zoom in on corner of calibration mask, with images after x and y shifts
(red arrows) stacked for demonstration purposes (right).

4. CONCLUSIONS

Self-calibration is an increasingly popular feature of astronomical instruments which promise to deliver high
astrometric performance. Manufacturing constraints result in the required astrometric calibration masks to
be challenging to make. The differential astrometric calibration technique proposed in this paper allows for a
high-precision distortion field to be recovered, with very little sensitivity to the manufacturing tolerance of the
calibration mask. The use of this method in the context of MAVIS is expected to allow MAVIS to reach its
required astrometric performance. With further tuning of calibration system parameters and choice of distortion
basis functions, it may even be possible to exceed the astrometric performance goals. Additional simulations are
also required to assess the impact of shifting errors on plate-scale distortion identification.
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