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ABSTRACT

Visualizing polarimetric imaging data is a difficult task due to its multidimensional nature, and there have been
many different approaches to develop techniques for displaying this information. Currently, there is no method
for producing effective visualizations, or evaluating their performance in accomplishing their intended goals.
A task-based design process can be used to make sure that the unavoidable biases that occur in these visual
representations match the biases required for effectively interpreting the information, relationships, and features
within the data. As the field of polarimetric imaging grows and extends into other fields, some standardization
of effective visualization techniques may be beneficial in communication and continued growth.
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1. INTRODUCTION

The fundamental difficulty in displaying the unique information that polarization imaging measures arises from
the fact that humans are polarization-blind. Consequently, in order to be visually represented, this data must
go through other channels in the human visual system (HVS). Most notably, mapping into color vision is often
used because of its structural similarities to polarization imaging data.1 However, other techniques for utilizing
other visual cues such as motion, texture, and flickering have been proposed.2 With few exceptions, the design
of visualizations used in polarization imaging are not analyzed for effectively achieving a particular goals. In
addition, the goals of the visualization often do not factor into design choices, even though the tools to do so are
available in the vast amount of literature on visualization design. Without concern for design, the visualizations
in polarimetric imaging may be ineffective, ill-suited for the intended task, or lead to biased or misleading
depictions of data.

The primary goal of this paper is to initiate discussion on the effective, task-oriented use of visualizations
for the varying types of data in polarimetric imaging. As polarimetric imaging is often a tool used by many
fields to study different phenomenon, specific techniques that are popular within disciplines are often unknown
to those in other disciplines, even though the types of data may be similar. To illustrate this, consider the
method of superimposing the polarization ellipse as proposed by Gagnon and Marshall.3 Although this method
was novel for the purpose of imaging polarimetric properties of biological specimens, the general method has
been used in astronomy for decades.4 We believe that the knowledge of effective visualization strategies should
be as accessible as possible to anyone using polarimetric imaging.

Often times, the purpose of a visualization is to explore the data and look for features or relationships.
Visualizations used for analysis are not necessarily good for communicating to an audience. An experienced
researcher can navigate a complicated visualization technique to explore their data, but this does not mean this
technique will be the most effective method of communicating ideas to an untrained audience. A good rule of
thumb is to make certain that the first impression one would have upon viewing the visualization should match
what the communicator is trying to express. Explanation on how to understand the visualization (eg colormaps)
should enhance the initial impression instead of causing reinterpretation.

It is well accepted that good techniques for writing are necessary for authors to communicate ideas. Similarly,
good techniques for creating visualizations can express things that words alone cannot. However, proficiency
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in communicating through visualizations is undervalued compared to writing.5 Scientific authors may spend
countless hours editing, rewriting, and scrutinizing every sentence of a piece of work and yet not put a similar
amount of effort in constructing effective visualization strategies.

2. TASK-BASED DESIGN

A good starting point for effective design is to define the purpose of the visualizations in terms of tasks. Just as
different types of imaging are more useful to study a certain phenomenon, different types of visualizations and
their variations are more applicable to assisting tasks. In visualization literature, there is no consensus on either
the exact definition of a “task” or the proper way to categorize a task. Instead of choosing one of dozens of
hierarchies to define any given task, it would be easier and more productive for the visualization designer to ask
questions about the intended outcomes of the representation. These questions can range from broad “Who is the
intended audience?” or “Is this exploratory analysis or am I looking for specific relationships?” to specific “Does
this contain high frequency spatial information?” While there are some tasks that have accepted definitions, the
questions the designers ask do not need to conform to those describe in visualization literature. However, it may
be useful to list some of the well-defined tasks6 here for a starting point.

Identification or Lookup : this task involves extracting data values. In this task, the goal is not to directly
express relationships between values but instead to maximize the ability to identify the value of a data point or
object. Equal visual importance as well as maximizing the number of colors is important for this task. This task
does not necessitate a perceptual ordering. Setting AoP to a hue map is accomplishing the identification task.

Comparison: this task is for expressing quantitative differences between data points. Comparison requires
perceptual ordering. In this sense, users should be able to tell the relations between points without relying on a
key. Examples of perceptually ordered cues are lightness, colorfulness, length, and opacity. Visualizations that
primarily support comparison task should not be used when the data does not fall into an order, since that would
impose an inaccurate structural appearance upon the data.

Localization: this task is meant to highlight regions of interest and suppress everything else. This is very useful
to immediately differentiate an area that has a specific polarization signature that is of interest.

Additionally, the types of data are important for matching with the available types of visual channels.

Monotonic: data is in a range of low to high. DoP often appears as monotonic. Visual channels such as
colorfulness, lightness, length, and opacity are monotonic.

Diverging: data falls on either end of some critical value. This critical value could be the point between negative
to positive, left or right, up or down, or could have theoretical connotations. DoCP is often diverging due to
values being right-handed or left-handed. Opponent color channels are a diverging visual channel.

Periodic: data that is cyclical, where there are no ends. AoP is often periodic, especially when the coordinates
are set arbitrarily. Hue and geometric angle are periodic visual channels.

Categorical: Data does not have any order, but is put into some group. Sufficiently separate hues or shapes
can be used to represent categorical data.

Continuous: Data does not fall into discrete steps or categories and requires visual channels that are also
continuous.

Discrete: Data can only have certain values. Continuous data can become discrete when binned.

Typically, the design for polarization visualization has been done prior to assigning tasks. That is, the
visualization is created without the input from the functions the user will be performing. Instead, it was assumed
that the visualization would be able to support all of the various tasks the user may decide to perform. This is
abundantly clear looking at the history behind the commonly used color fusion method for linear polarimetric
imaging. This method was designed by matching the similar dimensions of color and linear polarization. However,
there was no description of the tasks this mapping was meant to support or any supportive reasoning for its
effectiveness. Although more generally introduced earlier,1,7 the method was formalized in 19928 using the HSV
color space. Only recently was this method updated so that dark regions with high polarization were visible.
Before this update, obtaining polarimetric information from these regions was not possible with this visualization.
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Figure 1: Series of visualizations resulting from implementing different sets of tasks outlined in Table 1. Ground
MSPI data,9 λ = 660 nm.

Label Featured Tasks Design Implementation Figure

T1 P1, A1, A2, S1, L1, L2 as defined in10 1a

T2 P2, P1, A1, A2, S1, L1, L2 P = P x, x < 1 1b

T3 P3, P1, A1, A2, S1, L1, L2 P = P x, x > 1 1c

T4 D1, A1, A2, S1, L1, L2 P = ∆′ 1d

T5 P1, A3, S1, L1, L2 ψ = erfc(ψ) 1e
T6 D1, A3, S1, L1, L2 combination of T4, T5 1f

T7 D3, S1, L1, L2
P = max(∆, P )

ψ = 4/3 round(tan−1(∆/P ))
1g

Table 1: Design implementation resulting from task sets and their corresponding figure.

Thus this method was not supporting one of the most ubiquitous tasks: comparison of degree of polarization.
Because this task was not implemented into the design, there was nothing to ensure that this task would be
supported. Thus for future visualization methods, similar sources of ineffectiveness can be avoided by beginning
with a set of required tasks as the basis for choosing visual channels for encoding information.

The task-based design structure is already well-established in visualization literature, and has been imple-
mented for many applications. However, it has not been generally implemented for the application of polarimetric
imaging. With the task-based design structure, the majority of the decisions are made at the task level before
the visual channels are chosen. With an understanding of the visual channels available, the visualization can be
generated strictly from the set of tasks. This contrasts the majority of previous strategies where the visualization
designs were created before assigning tasks. The example later in this paper shows in detail the methodological
construction of a visualization based on selecting and balancing specific tasks. Additionally, meaningful varia-
tions can be derived by replacing some of those tasks. While there are a great number of possible tasks that
could apply to polarimetric imaging, the following list is a collection of useful tasks appropriate for describing
a large number of scenarios as well as a few specific applications. In some cases, two tasks may coexist in a
visualization without issue. In other cases, two tasks may be incompatible or outright contradictory. And lastly,
tasks may coexist in some diminished form in a similar way to a function that is optimized over a weighted
combination of variables.

P1: Comparison of degree of linear polarization (DoLP). The user is able to perceptually order the amount
of DoLP within the scene, and make judgments on the relative distances between values that correspond to
perceptual distances. In this, users would be able to look at two regions of interest and quickly determine which
has a stronger amount of polarization without consulting a reference guide. This may contrast with other P
tasks since DoLP would have to be represented by a linear perceptual channel. This does not require the user
to be able to extract the exact values.
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P2: Localizing polarized areas from unpolarized. The user is able to quickly determine which areas have an
appreciable amount of polarization. This may contrast with other P tasks since low but significant polarization
signals may be amplified to differentiate them from the unpolarized background.

P3: Localizing areas with high polarization from areas with middle to no polarization. In this, the user would be
able to differentiate the strongest polarization signals. This may contrast with other P tasks since differentiation
may cause suppression of middle and lower polarization signals.

L1 Determine physical attributes of the objects in the scene. This includes being able to determine location,
shape, size, and surrounding context of everything within the scene in a recognizable fashion. Additionally,
each polarimetric channel is located at the same physical location and not separated in space. Visualizations
incorporating this task would appear more image-like than it would without it.

L2 Comparison of intensity. Similarly to P1, users are able to perceptually order and compare relative intensities.

S1: Assess polarimetric channels independently. This task involves the user being able to perform tasks on each
individual polarimetric channel without hindrance by or confusion with the other channels. Without this task,
perceptual channels represent a mixture of polarimetric channels.10

A1: Identification of full range of angle of polarization (AoP). The user is able to extract the value of any angle
with maximized accuracy.

A2: Comparison of magnitude difference in AoP. Since AoP is periodic, the direction of change does not need
to conform to a perceived ordering. However, the magnitude difference can be determined by the ordering of
the magnitude of perceived difference. Combined with A1, the user would be able to perceive gradients or
dissimilarity between angles smaller than the margin of error of the A1. While the user may not be able to
quantify the difference using A1, they would still be able to compare the magnitude of change or difference.

A3: Identification of AoP within the neighborhood of a reference angle. This can be seen as an extension
of A1 in which there is a greater range of perceivable difference between angles when they are close to some
reference angle. This task may be important when there are small but appreciable differences between angles
that correspond to distinct regions. For example, in a scene that is dominated by reflection of a linearly polarized
source, the resulting polarization signals will often be similar but distinctly different to the source. However, the
small differences may only be discernible when there are large corresponding perceptual differences. Generally,
this will contrast with the ability to identify angles that are not close to the reference angle due to the limited
number of identifiable characteristics in any perceptual channel.

D1: Comparison of AoP confidence. Using the variability metric ∆ from our earlier work,11 tasks can be
performed on the corresponding confidence metric ∆′ = 1 −∆ directly. This would work exactly like P1 task,
although the two may be in contrast when there are not enough linear perceptual channels available.

D2: Identification of DoLP vs ∆′. As our previous work depicted, the confidence in the AoP does not necessarily
correspond to a significant amount of DoLP in some regions. Therefore, polarization signals could be labeled
exclusively to one of the following: no polarization, high confidence but low DoLP, high confidence and high
DoLP, and low confidence and high DoLP (false polarization). This function of this task is to identify the
category of each polarization signal.

One set of these tasks T1 defines the basic structure of the visualization mapping strategy formulated
by our upcoming publication.10 One solution that incorporates these tasks utilizes the color channels within
the perceptually uniform channels within the color model CAM02-UCS.12 This color space is defined by the
cylindrical channels of lightness J ′, colorfulness M ′, and hue h corresponding to axial position, radius, and polar
angle. A similar solution space was argued for by Solomon.13 However, the model he proposed cannot fully
support the tasks T1. Instead, because the human visual system’s perception of color does not match a nice
cylindrical shape, there are conflicts between tasks. To resolve this, the tasks were weighted in such a way that
S1 was limited to only having DoLP and AoP to be represented by completely independent perceptual channels,
and the intensity range, represented by the lightness channel, was dependent on DoLP. While it is possible to
fully support S1 by creating a cylindrical subset of the entire color space, the limitations this would place on
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the colorfulness and lightness would significantly hinder P1, L1, and L2. order to support P1, the tasks S1,
L1, and L2 had to assume less support. The resulting mapping strategies are

gh(ψ) = 2 · ψ
gM ′(P ) = max(c) · P
gJ′(I, P ) = I · (J ′1 − J ′0) + J ′0

J ′0, J
′
1 = {J ′ : c(J ′) = gM ′(P )}

(1)

where gx is the mapping function of perceptual channel x, P is DoLP, I is intensity, ψ is AoP, c is a curve
representing the edge of the rotationally symmetric subset of the UCS color space, and the bar above the channels
represent any and all preparations of the channel including normalization, nonlinear stretching, binning, etc. It
is in this preparation step where different tasks can be implemented easily into this structure. Here we will
discuss 6 different task variations within this structure.

Task set T2 implements the task P2 at the detriment to P1. In this case, the colorfulness channel is amplified
by a for regions with low and moderate polarization in order to differentiate them from the unpolarized areas.
While the polarization differences no longer linearly correspond to perceptual differences, the ordering aspect of
P1 is still apparent. Looking at Fig. 1b, it is easier to differentiate polarized areas in comparison with Fig. 1a. In
contrast, task set T3 does the opposite, where only the regions with the highest polarization are differentiable.
This makes it extraordinarily easy for the user to immediately know the location the most significant polarization
signals. Task set T4 allows the user to compare the confidence in the AoP, but consequently removes the ability to
compare the DoLP. It can be seen in this variation how the majority of the scene displays a confident AoP that is
similar to the scattering angle. While Fig. 1a displays similarity between the AoP within the scene, implementing
a task set T5 that allows for more identifiable colors within the range close the scattering angle displays the
significant differences between areas with seemingly similar polarization signatures. This can additionally be
combined with A3 to display the differences between similar signals not shown in Fig. 1d. To emphasize the fact
that areas with high AoP confidence do not necessarily have a high polarization, the task set T7 would support
this identification. In this, a polarization signal falls into one of the four categories discussed earlier. This would
also help identify sources of false polarization.

3. BIASES

Not only does beginning with a task-oriented basis establishes the ability to perform the tasks required for user
interpretation, but it prevents unintentional tasks from being imposed that would introduce unwanted biases.
This is due to the inseparable connection of tasks to biases. The set of supported tasks creates the biased lens
through which the user must visually interpret the information. The notion that a visualization could ever
be unbiased is a misconception, since the processing channels in the HVS are themselves biased. The job of
the visualization designer is therefore to make sure that the unavoidable biases in the visualization match the
biases needed for interpretation. The chosen sets of tasks can be considered a set of biases that are desirable for
interpretation, and the sets of tasks that are not supported are the biases that are not desirable in that particular
instance.

To help explain how unintentional biases can creep into visualizations, consider these three design criteria
outlined by Kindlmann and Scheidegger: Representation Invariance (RI), Unambiguous Data Depiction (UDD),
and Visual-Data Correspondence (VDC).14 RI states that arbitrary changes to the system should not affect the
ability to perform tasks in the visualization. Failing to satisfy RI allows different biases to be introduced that
correspond to data that is meant to be equally biased. This is of particular concern for polarimetric imaging,
where the choice of coordinates for the AoP are arbitrarily set for the system or image. This can be interpreted in
this sense as “Rotational Invariance”. If choosing new axes results in the impression of the visualization to change,
this violates RI. Considering a hue mapping for AoP, the arbitrary decision of whether the horizontal angle is
represented as red, blue, or green, should not have any meaningful affect on the interpretation. Secondly, UDD
states significant changes in the data must be accompanied by significant changes in the visualization. Failing
to do so would mean that the user misses key information. Thus, this visualization would bias the user into
perceiving that information as insignificant. Similarly, VDC states that changes that are not significant should
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(a) (b)

Figure 2: Different representations of the same angular difference for AoP mapped to Hue in HSV

not be represented by large changes in the visualization. This would mean that the visualization would create
biases such that the user would perceive insignificant information as significant. Fig. 2 shows two representations
of the same angular difference in polarization when the coordinates are rotated. In this example, the common
periodic colormap created by cycling through hues at maximum saturation and value in HSV. The fact that the
two representations express drastically different color differences means that this visualization system violates
RI. Moreover, Fig. 2b also violates VDC, since a significant change in AoP is not expressed as a significant
change in perceived hue.

It may be helpful to approach biases in a quantifiable form. Our attention is not drawn equally for the various
representative variables used for visualizing. Bernard et al define several metrics for colormap attributes that are
important for the application of tasks.15 We can look at their metric for attention steering. Attention is steered
toward bright and colorful features, which makes those features appear as more important or prominent than
other features. They used this concept to define a color’s “attention” as the hypotenuse of lightness and chroma
in CIELAB. For the given set of colors in a colormap, the standard deviation is a measure of how unequally
the attention is distributed for the various colors. This metric could be applied generally for any representative
variable, provided there is some measure of attention. Low values are desirable when data values are meant to
be displayed with equal importance, while higher values are desired when trying to highlight data values. For
AoP, unless there is a specific angle or set of angles that are of more importance, it generally is desirable to show
equal importance across the entire range. In contrast, higher values for degree of polarization (DoP) are usually
of more importance than smaller values. In this case, the viewer’s attention should be steered toward areas with
high polarization. A desirable metric in this case would describe how the attention increases, or the velocity of
attention. More abstractly, it is desirable that the visualization steers attention toward values that faithfully
correspond to intended biases of the importance of values.

When looking at combinations of tasks, a solution that supports all of the tasks could be achieved by
optimizing their associated metrics. Perceptual linearity relates to how perceptual differences correspond to
data value differences. This can be applied globally, where the ratio between perceptual difference and value
difference is always equal. For a globally linear system, doubling the value difference should double the perceptual
difference. Linearity can be applied locally, where each discrete step in the perceptual representation represents
the same amount of value difference. Color exploitation is a measure of the number of colors that are just
noticeable different, which also represents how much of the color space is being used. If we look at a simple
case involving the comparison and identification tasks on a single variable, the colormap that supports both of
these tasks is the solution of an optimization of a weighted cost function involving metrics of local and global
linearity and color exploitation. Identification requires many discernible features, while comparison requires the
features to be in a linear perceptual order. This solution takes the form of “spiral” colormaps, that gets its name
from the colormap spiraling from dark to light in 3D color space.16 These maps sacrifice some global linearity
which allows a greater number of colors, and it sacrifices the range of colors to preserve some global linearity.
These types of colormaps are usually set as the default for most applications. Examples include matplotlib’s
viridis17 and MATLAB’s parula.18 While there is no evidence that the design of these colormaps employed
a literal optimization process, it is nonetheless helpful to view their solution as figuratively functioning as a
mathematical solution. Such optimization solutions have been proposed,19 yet have not been fully explored.
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4. CONCLUSION

The visualization of polarimetric imaging data is inherently difficult due to the multidimensional nature of the
measured parameters. Because any visual representation must contain some biases, a task-oriented design method
is useful in maintaining that those biases represent how the user is meant to interpret the information. The design
of a visualization will naturally follow once the tasks are carefully chosen, as demonstrated in Table 1. Simple
changes to the supported tasks can produce significantly different visualizations that lead to distinct conclusions,
as indicated by Fig. 1. If the tasks are not chosen carefully, or in the case of much of the current polarization
visualization, not consciously chosen, these conclusions may not represent what is intended or backed by evidence.
Hopefully this task-based method will be a starting point for more effective visualization design that can be used
by anyone using polarimetric imaging.
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