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ABSTRACT
We have recently introduced channeled-partial Mueller matrix polarimeters as a potential design for measuring a
limited number of Mueller elements for remote sensing discrimination. Because in such systems the polarization
information is modulated in space or spectrum, the corresponding carrier domain ends up sharing two dif-
ferent types of information, thus leading to a reduction of bandwidth for each. In this work, we concentrate
on an efficient nine-channel/nine-reconstructables design, which limits the associated resolution loss by limiting
the overall complexity of the system. Employing structured decomposition techniques allows us to produce a
system description that provides an analytically deducible set of reconstructables that include 𝑚00, any two
linear combinations of the elements within the diattenuation vector, any two linear combinations of the elements
within the polarizance vector, as well as the linear combinations specified by the Kronecker product of the
diattenuation and polarizance vectors. Finally, we optimize the available polarimeter parameters to align the
nine reconstructables with the desirables derived from sample data, while maintaining the ability to discriminate
between different objects.
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1. INTRODUCTION
Channeled polarimeters are a relatively recent,1–7 but a powerful class of polarimeters.8–11 They are esteemed
for their inherent disposition towards constructing single-snapshot systems, whereby any additional polarization-
sensitivity-induced temporal bandwidth limitations are eliminated at the expense of introducing such limitations
in different domains, namely, space and/or spectrum. These bandwidth constraints come about as a consequence
of modulations that are introduced within the respective domains: for whichever domains polarization informa-
tion is modulated in, there is an associated loss of resolution in those same domains. This is because you are
effectively sharing the total bandwidth of a domain between two different types of information: the native domain
content, as well as the polarization content. Moreover, each new modulation carrier is not free either from the
system cost perspective, or the noise performance side of things. In order to have enough diversified information
within each channel for the Mueller matrix to be reconstructable, we need multiple modulations. And for the
same reason that a Poincaré sphere requires two angles to navigate it, we need at least two modulations within
both the Polarization State Generator (PSG) and the Polarization State Analyzer for them to be full-Stokes, and
the polarimeter as a whole to be full-Mueller. Each of those subsequent modulation carriers reduces the signal
amplitude by a factor of two, while multiple carries of different frequencies can produce channels that either
combine or annihilate, which produces non-trivial information mixtures within each channel. Our original works
tackled the unmixing performance optimization and offered ways to describe systems in a way that elucidates
the channel contents and the conditioning of the implied inversion process. In this paper, we will discuss one
system from a more recent development where we have introduced channeled partial Mueller matrix polarimeters
(c-pMMPs). In that work, we looked to set out to adapt some of the partial polarimetry principles to channeled
systems to minimize the number of channels produced and also to minimize the amount of sharing that occurred
between polarization and spectrum information. This nine channeled partial Mueller matrix polarimeter (9-
c-pMMP) fell out as a bit of a surprise—a few of the systems on the pareto-surface of the optimization had two
of the carrier frequencies set to zero, which equivalently removed the corresponding elements altogether. Upon
investigating that finding a bit closer, we realized that the 9-c-pMMP is an extremely efficient design from the
perspective of having nine channels and nine reconstructables. Furthermore, it may represent a potential solution
to alleviate the constraints associated with bandwidth-sharing by having fewer modulation-inducing elements,
fewer carriers, and thus higher bandwidth. Figure 1 demonstrates this motivation.
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Figure 1: Subfigures (a)–(e) show how the channels split as more modulations are added. With each split, the
bandwidth available to the channels within the new channel structure is reduced. Subfigure (f) is one of the
9-c-pMMP: the number of modulations is reduced to increase bandwidth.

In prior work, we looked at partial Mueller matrix polarimeters12 (pMMPs) and c-pMMPs.13 In both works,
we used the data from Hoover and Tyo14 to define the set of linear combinations of Mueller matrix elements that
provide the largest predictors of material damage state when observed in a bi-static configuration. Looking at
four classes of objects at 25 orientation configurations, we defined the following linear combinations of Mueller
elements as the scene space,

Y =
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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−0.0004 0.0033 −0.0085
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⎥
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. (1)

The goal of each optimization was then to find the system configuration that produces the closest possible sensor
space, while reducing the number of measurements made or channels created. For the case of c-pMMPs, we used
Hagen’s spectropolarimeter4 as the overall architectural base for the optimization and then identified conditions
under which a partial measurement is made. The decision to use that particular system was not fundamental
to the discovered outcomes; the principles used there apply to any channeled system. However, because Hagen’s
system represents a set of single-domain modulation carriers, working with it proved more straightforward—there
is no additional complexity of multiple-domain carrier splitting and enumeration. The overall principle of Hagen’s
system is introduction of four spectral carriers that create channels within the respective conjugate Fourier-
domain, optical path difference (OPD), spaced accoringly to the thickness parameters of the birefringent plates
as described by d . The candidate c-pMMP systems were then found by making superficial code adjustments
that allowed for further loosening of the optimization constraints—a zero frequency was interpreted as a null-
element. Because this modification would inadvertantly limit the number of reconstructable Mueller element, we
adjusted the setup by introducing two additional zero-order retarders in PSA and PSG to provide the additional
capacity to rotate the channel structure to obtain the best possible match between the scene space and the
sensor space.12,15 Figure 2 shows the system setup and the final pareto-surface of the optimization, while Fig.
3 shows results from two c-pMMPs: #4 is able to match sensor and scene spaces almost perfectly, while #1 has
a class separation on the order of 40% of what a full system would produce. Although a disadvantage, c-pMMP
#1 represents an efficient system that has nine channels and nine reconstructables. It removes two of the four
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carriers, resulting in better noise resilience and bandwidth. The principles of the 9-c-pMMP are not limited to
using Hagen’s setup as the base—an equivalent exists when using Kudenov’s setup as the base.7 Figure 1 shows
how the spatial-spatial channeled system can be devolved into a 9-c-pMMP of 1f.
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Figure 2: Adaptation of the system layout and the resulting solution space.
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Figure 3: Space coverage afforded by different c-pMMP designs.
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2. CHANNELED FORMALISM
A polarimetric measurement is a sum of products,

𝐼 ( ⃗𝜗) =
3

∑
𝑖=0

3
∑
𝑗=0

𝑓𝑎,𝑖 ( ⃗𝜗) 𝑚𝑖𝑗 ( ⃗𝜗) 𝑓𝑔,𝑗 ( ⃗𝜗) , (2)

where 𝑚𝑖𝑗 is the Mueller element content, while 𝑓𝑔 and 𝑓𝑎 are modulating functions that vary over the set of
domains, ⃗𝜗. Channeled systems perform the same operation, but by constraining the modulation functions to a
combination of 𝑀 sinusoids,

𝑓𝑖𝑗 ( ⃗𝜗) =
𝑀
∏
𝑚=1

cos
sin (2𝜋𝜉𝑚𝑥) , (3)

and selecting appropriate carrier frequencies, 𝜉𝑚s, we can shape a favorable channel structure within the Fourier
domain of the measurement. To describe the channel structure, we analytically calculate the Fourier transform
of those functions by forming two auxiliary matrices:

F𝑀 = [ f 1 f 2 ⋯ f 𝑀 ] , where 𝑓𝑚,𝑘 = {0 if cos
1 if sin

, (4)

O𝑀 = [ o1 o2 ⋯ o𝑀 ] , where 𝑜𝑚,ℓ = {−1 if − 𝜉𝑖
+1 if + 𝜉𝑖

, (5)

from which we calculate the Frequency Phase Matrix (FPM),

P𝑀 ≡ 1
2𝑀 exp [−j𝜋

2
(F𝑀 OT

𝑀 )] , (6)

which can be seen in Fig. 4. Each row of the FPM represents the channel structure imposed on a Mueller
element, as a consequence of the particular combination of functions and frequencies.
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Figure 4: FPM for four sinusoid modulations. Although each row represents the applied modulation completely,
it can reference potentially the same frequencies multiple times. For example, if 𝜉𝑖 = 𝜉𝑗, the coefficients of
𝛿(𝜉 − 𝜉𝑖 + 𝜉𝑗) and 𝛿(𝜉 + 𝜉𝑖 − 𝜉𝑗) will interfere.
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Each element’s multiple-domain modulations can be described in a number of equivalent ways:

q{𝜏,𝜔,𝜉,𝜂};𝑚𝑖𝑗
= q{𝜏};𝑚𝑖𝑗

⊗ q{𝜔};𝑚𝑖𝑗
⊗ q{𝜉};𝑚𝑖𝑗

⊗ q{𝜂};𝑚𝑖𝑗
, (7a)

= vec (q 𝜉𝑒1 ;𝑚𝑖𝑗
∗ q𝜂𝑒2 ;𝑚𝑖𝑗

∗ q 𝜉𝑒3 ;𝑚𝑖𝑗
∗ q𝜂𝑒4 ;𝑚𝑖𝑗

) , (7b)

= vec (q{𝜏,𝜔,𝜉,𝜂},𝑔𝑖
∗ q{𝜏,𝜔,𝜉,𝜂},𝑎𝑗

) . (7c)

The first method isolates modulations within each domain and treats them orthogonally with the Kronecker
product. The second method recognizes that each carrier-inducing element has an associated modulation and
combines them all with an 𝑀 -dimensional convolution. Finally, the third method is a natural extension of the
second method for having identified all of the modulations implied by the carrier-inducing elements within PSG
and PSA first and then combining those in turn. Depending on how modulations are achieved, one way may be
easier to implement than another. However, regardless of the approach selected, the same set of channel vectors
for each Mueller element will result. Once derived, the 16 channel structures (one for each Mueller element) can
be concatenated together into Q ,

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

qT
{𝜏,𝜔,𝜉,𝜂};𝑚00

qT
{𝜏,𝜔,𝜉,𝜂};𝑚01

qT
{𝜏,𝜔,𝜉,𝜂};𝑚02

qT
{𝜏,𝜔,𝜉,𝜂};𝑚03

qT
{𝜏,𝜔,𝜉,𝜂};𝑚10

qT
{𝜏,𝜔,𝜉,𝜂};𝑚11

qT
{𝜏,𝜔,𝜉,𝜂};𝑚12

qT
{𝜏,𝜔,𝜉,𝜂};𝑚13

qT
{𝜏,𝜔,𝜉,𝜂};𝑚20

qT
{𝜏,𝜔,𝜉,𝜂};𝑚21

qT
{𝜏,𝜔,𝜉,𝜂};𝑚22

qT
{𝜏,𝜔,𝜉,𝜂};𝑚23

qT
{𝜏,𝜔,𝜉,𝜂};𝑚30

qT
{𝜏,𝜔,𝜉,𝜂};𝑚31

qT
{𝜏,𝜔,𝜉,𝜂};𝑚32

qT
{𝜏,𝜔,𝜉,𝜂};𝑚33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

, (8)

which serves as a mapping of the Fourier transform of the Mueller element information contained within the
Mueller vector, M , into the measured Fourier channels, C , or

ℱ{C} = Qℱ{M}. (9)

The measurement matrix is then inverted to produce the Mueller vector estimate,

̂M = ℱ−1 {Q+ℱ{C}} . (10)

To solve the inverse problem, we use Singular Value Decomposition (SVD),16 a choice which also readily reveals
the system’s performance. The measurement matrix can be decomposed as

Q = UQ 𝛴 Q V †
Q , (11)

where mathematically, UQ and V Q are 𝑁𝐶 × 𝑅 and 16 × 16 unitary orthogonal matrices containing the left
and the right singular vectors, respectively, while matrix 𝛴 is an 𝑅 × 16 diagonal matrix containing singular
values. 𝑁𝐶 is the number of channels and 𝑅 is the rank of Q . The pseudo-inverse can then be written as:

Q+ = V Q 𝛴 +
Q U †

Q . (12)
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3. 9-C-PMMP
The base channeled polarimeter from our prior work13 can be described with the following modulation functions:

f G =
⎡
⎢
⎢
⎣

1
cos(2𝜋𝜗1

̃𝜗1)
sin(2𝜋𝜗1

̃𝜗1) sin(2𝜋𝜗2
̃𝜗2)

sin(2𝜋𝜗1
̃𝜗1) cos(2𝜋𝜗2

̃𝜗2)

⎤
⎥
⎥
⎦

, (13a)

f A =
⎡
⎢
⎢
⎣

1
cos(2𝜋𝜗4

̃𝜗4)
sin(2𝜋𝜗3

̃𝜗3) sin(2𝜋𝜗4
̃𝜗4)

cos(2𝜋𝜗3
̃𝜗3) sin(2𝜋𝜗4

̃𝜗4)

⎤
⎥
⎥
⎦

, (13b)

where 𝜗𝑖s are the domains and ̃𝜗𝑖s are the carrier frequencies within the respective conjugate domains. By
removing two elements, we arrive at the default 9-c-pMMP design, which can be described with the following
modulation functions:

f G =
⎡
⎢
⎢
⎣

1
cos(2𝜋𝜗1

̃𝜗1)
sin(2𝜋𝜗1

̃𝜗1)
0

⎤
⎥
⎥
⎦

, (14a)

f A =
⎡
⎢
⎢
⎣

1
cos(2𝜋𝜗4

̃𝜗4)
sin(2𝜋𝜗4

̃𝜗4)
0

⎤
⎥
⎥
⎦

. (14b)

The fact that 𝑎3 = 𝑔3 = 0 means that the default configuration is insensitive to the fourth row and the fourth
column of the Mueller matrix. By adding the two extra zero-order linear retarders: one within PSA, one within
PSG; we avoid inducing any additional carriers while allowing us to change the set of linear combinations of
Mueller elements that we are sensitive to. Since the Mueller matrix for a linear retarder is a unitary matrix,
we can more accurately call this a rotated configuration. The reconstructables rotation is achieved by varying
the four parameters, {𝛿𝐴, 𝛿𝐺, 𝜃𝐴, 𝜃𝐺}. Within the original c-pMMP treatment, they were additional optimization
parameters used in sensor/scene space alignment

The first 9-c-pMMP was discovered within the one-dimensional spectral modulation based off of Hagen’s
design,4 when we removed two elements and set 3𝑑1 = 𝑑4, we arrive at the 9 × 1 channel structure shown in Fig.
7a. However, a mathematically equivalent design exists within the two-dimensional spatial modulation based
off of Kudenov’s design.7 That design involves polarization gratings and focusing optics in-between to create a
different carrier frequencies. Again, by removing two of the four carrier-inducing elements, we arrive at the 3 × 3
channel structure shown in Fig. 7b. The steps taken to produce these two systems are summarized in Figs. 5
and 6. The default configuration of the 9-c-pMMP has 𝛿𝐴 = 𝛿𝐺 = 𝜃𝐴 = 𝜃𝐺 = 0, which corresponds to following
sensor space:

V ′
⃗0 = [ v ⃗0,1 v ⃗0,2 ⋯ v ⃗0,9 ] =

⎡
⎢
⎢
⎢
⎢
⎣

𝕀3×3 𝟘3×3 𝟘3×3
𝟘1×3 𝟘1×3 𝟘1×3
𝟘3×3 𝕀3×3 𝟘3×3
𝟘1×3 𝟘1×3 𝟘1×3
𝟘3×3 𝟘3×3 𝕀3×3
𝟘5×3 𝟘5×3 𝟘5×3

⎤
⎥
⎥
⎥
⎥
⎦

. (15)

By calculating the reconstructable matrix, we see a clear delineation of sensitivity to the linear-linear transfor-
mations of the Mueller matrix space,

B ⃗0 = mat (diag (V ′
⃗0V

′
⃗0
T)) =

⎡
⎢⎢
⎣

1
1
1
0

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
1
1
0

⎤
⎥⎥
⎦

T

=
⎡
⎢⎢
⎣

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

⎤
⎥⎥
⎦

. (16)
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Figure 5: Spectrally modulated channeled polarimeter
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In order to track variance distribution with a bit more clarity, we introduce notation to make the distinction
of equally-weighted variance (EWV) for a variable number of reconstructables, EWV𝑅, where 𝑅 is the rank of
the matrix. An optimal channeled full single-snapshot polarimeter has 𝑅 = 16, implying sensitivity to the entire
Mueller matrix. The summary metric of EWV16 = 121 is borne out of the familiar set of variances:9

EWV16 = ∑ ∑
⎡
⎢⎢
⎣

1
2
4
4

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
2
4
4

⎤
⎥⎥
⎦

T

= ∑ ∑
⎡
⎢⎢
⎣

1 2 4 4
2 4 8 8
4 8 16 16
4 8 16 16

⎤
⎥⎥
⎦

= 121. (17)

However, for the 9-c-pMMP, we have one fewer modulations in both PSA and PSG, resulting in 𝑅 = 9 and the
following set of variances:

EWV9 = ∑ ∑
⎡
⎢⎢
⎣

1
2
2
⌀

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
2
2
⌀

⎤
⎥⎥
⎦

T

= ∑ ∑
⎡
⎢⎢
⎣

1 2 2 ⌀
2 4 4 ⌀
2 4 4 ⌀
⌀ ⌀ ⌀ ⌀

⎤
⎥⎥
⎦

= 25. (18)

An equally apt demonstration of the principle behind this result can be seen in Fig. 2c, where the nine-channeled
system shows a better noise resilience when compared to its “bigger siblings”. Thus, this design represents a
clear trade-off—we can measure fewer elements with higher accuracy.

For the rotated configuration, we can show that the following expression transforms a default vector into a
rotated vector of the sensor space:

v ⃗𝜉,𝑖 = vec (MLR(𝛿𝐺, 𝜃𝐺) mat(v ⃗0,𝑖)MLR(𝛿𝐴, 𝜃𝐴)) , (19)

where vec is used to vectorize a 4 × 4 matrix in row-by-row fashion into a 16 × 1 vector, while mat is used to
consistently matricize a 16×1 vector into a 4×4 matrix. The rotated configuration’s sensor space is then simply
a concatenation of all nine rotated vectors:

V ′
⃗𝜉 = [ v ⃗𝜉,1 v ⃗𝜉,2 ⋯ v ⃗𝜉,9 ] , (20)

which can be shown to produce the following reconstructables matrix:

B ⃗𝜉 =
⎡
⎢
⎢
⎣

1
1 − sin2 2𝜃𝐴 sin2 𝛿𝐴
1 − cos2 2𝜃𝐴 sin2 𝛿𝐴

sin2 𝛿𝐴

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
1 − sin2 2𝜃𝐺 sin2 𝛿𝐺
1 − cos2 2𝜃𝐺 sin2 𝛿𝐺

sin2 𝛿𝐺

⎤
⎥
⎥
⎦

T

. (21)

Because (1 − sin2 2𝜃 sin2 𝛿) + (1 − cos2 2𝜃 sin2 𝛿) + (sin2 𝛿) = 2, a rotated 9-c-pMMP maintains access to 2/3
rank-units within the polarizance and diattenuation vectors of the Mueller matrix, as well as 4/9 rank-units
within the 3 × 3 rotation block as obtained with the Kronecker product. It is important to note that just like
with full systems, this rotation does not change EWV𝑅; the same variances from Eq. 18 will be true for some
calculable—but not necessarily obvious—linear combinations within the Mueller matrix space.

We performed a similar rotation in the original generalized channeled polarimetry treatment,9 where we
looked at the possibility of performing multiple snapshots, with each one having a different set of parameters.
The analysis was performed on a Kudenov-like spatial configuration of Fig. 6, and the results can be seen in
Table 1. Note that the number of channels within PSA and PSG channel structures is dictated by the values of
𝑑𝑖; for example, 1/1/1/1 in 𝑦/𝑦/𝑥/𝑥 creates a 5 × 5 channel structure, while 2/1/1/2 in 𝑦/𝑦/𝑥/𝑥 creates a 7 × 7
channel structure. From the numbers, it is evident that you have to create a 7 × 7 channel structure in order
to have an optimal single-snapshot channeled system with EWV = 121. However, if the temporal constraints
are loose enough to get away with multiple snapshots, then the EWV of 5 × 5 and 5 × 7 systems become more
competitive as the number of snapshots increases. This can be understood to mean that an increasing number
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of diverse snapshots enables previously-unavailable channel structures that are as-a-whole easier to unmix. In
order to tackle these channel structures, we simply concatenate 𝑁 individual snapshots as shown in Figure 8,

Q total = [ QT
1 QT

2 ⋯ QT
𝑁 ]

T
. (22)
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(a) 1-snapshot default 9-c-pMMP
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(b) 1-snapshot rotated 9-c-pMMP
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(c) 1-snapshot rotated 9-c-pMMP
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(d) 2-snapshot rotated 9-c-pMMP
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(e) 3-snapshot rotated 9-c-pMMP

Figure 8: Q for different number of snapshots with 9-c-pMMP
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This reduction of unmixing complexity as a result of increased number of snapshots also exists for multi-
snapshot 9-c-pMMPs. In fact, if temporal bandwidth is less critical than spatial bandwidth and going to three
snapshots is acceptable, then the 9-c-pMMP enables a very interesting option. As can be seen from Table 2,
three partial snapshots perform only about 7% worse in noise resilience, while allowing the spatial bandwidth
increase to 233% of the 7 × 7 system in both 𝑥 and 𝑦, which corresponds to each channel containing 544% the
number of frequencies. Figure 9 summarizes the spatial bandwidth advantage of the multi-snapshot 9-c-pMMP.
Also included in that comparison is a two-snapshot 5 × 5 channel system, which is only competitive in a multi-
snapshot configuration, while providing a highly non-optimal EWV16 = 441 in single-snapshot mode. Overall,
this analysis introduces a clear trade-off between spatial and temporal bandwidths—by modulating in both, we
can tailor the resolution of our reconstructed data for the set of conditions the given application entails.17

Table 1: EWV of multi-snapshot full channeled polarimeters. The row and column entries refer to 𝑑1/𝑑2 and
𝑑3/𝑑4 parameters, respectively. The symmetry of PSA/PSG calculations is evident.

1/1 2/1 1/2 2/2

1/1 441.0 171.7 214.9 151.0
2/1 171.7 121.0 147.7 147.7
1/2 214.9 147.7 133.0 214.9
2/2 151.0 147.7 214.9 441.0

(a) 1-Snapshot Full Design

1/1 2/1 1/2 2/2

1/1 60.00 53.50 53.60 53.60
2/1 53.50 53.57 54.28 53.50
1/2 53.60 54.28 56.22 59.08
2/2 53.60 53.50 59.08 60.00

(b) 2-Snapshot Full Design

1/1 2/1 1/2 2/2

1/1 36.26 35.50 35.32 35.00
2/1 35.50 34.00 34.50 34.77
1/2 35.32 34.50 35.20 35.95
2/2 35.00 34.77 35.95 36.49

(c) 3-Snapshot Full Design

1/1 2/1 1/2 2/2

1/1 25.33 25.48 25.52 25.65
2/1 25.48 25.22 25.61 25.61
1/2 25.52 25.61 25.78 26.16
2/2 25.65 25.61 26.16 25.94

(d) 4-Snapshot Full Design

Table 2: Multi-snapshot 9-c-pMMP designs and EWV performance.

𝑁 𝑅 𝛿𝐺 𝛿𝐴 𝜃𝐺 𝜃𝐴 EWV𝑅

1 9 – – – – 25.00
2 14 cos−1(1/

√
3) cos−1(1/

√
3) {37.5∘, 82.5∘} {15∘, 60∘} 39.60

3 16 cos−1(1/
√

3) cos−1(1/
√

3) {37.5∘, 97.5∘, 157.5∘} {15∘, 75∘, 135∘} 36.33
4 16 cos−1(1/

√
3) cos−1(1/

√
3) {37.5∘, 82.5∘, 127.5∘, 172.5∘} {15∘, 60∘, 105∘, 150∘} 26.65

𝜉

𝜂

(a) 49 channels — 100% bandwidth
good full performance at 1 snapshots

𝜉

𝜂

(b) 25 channels — 140% bandwidth
good full performance at 2 snapshots

𝜉

𝜂

(c) 9 channels — 233% bandwidth
good full performance at 3 snapshots

Figure 9: Channel structures and bandwidth of multi-snapshot systems
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4. CONCLUSION
In this extension of the c-pMMP analysis, we have taken a first detailed look at the implications of the 9-c-pMMP.
This system provides a unique set of trade-offs; by discarding two out of the four carrier-inducing polarization
elements, the system is simplified in a variety of ways. For the spatially modulated 9-c-pMMP, we can use a single
carrier in each of the two spatial domains, thereby eliminating the need for careful alignment of various focusing
optics to match the intended interference. For the spectrally modulated 9-c-pMMP, the difficulty of assembly is
also lessened through not having to worry about the thickness mismatch—as long as one of the frequencies is
equal to or greater than three times the other, channels will not incur any extra interference. Furthermore, the
reduced number of modulations enable channels with more bandwidth, and of better noise resilience as well.

The biggest drawback to a 9-c-pMMP system is that its architecture might not always be adjustable enough
to measure the desired set of Mueller elements in a single-snapshot. However, in the case that some temporal
bandwidth can be given up, a 9-c-pMMP can be used in a multi-snapshot configuration. And if we look at an
optimal 7 × 7 spatially-modulated channeled polarimeter as one extreme, and a conventional Mueller matrix
taking 16 snapshots as another, the three-snapshot hybrid modulation presents a great alternative. Instead of
giving up a factor of 49 in spatial bandwidth or a factor of 16 in temporal bandwidth, we can spread out the
loss of resolution and give up a factor of 9 in spatial bandwidth and a factor of 3 in temporal bandwidth.

Though the results in Table 2 indicate that there exist two- and three-snapshot systems that result in rank 14
and 16 reconstructions, these ranks are not a guarantee. Depending on how you structure the parameters of the
additional linear retarders will determine whether you are sensing the Mueller space efficiently. In order to assess
how the individual snapshots combine in the multi-snapshot mode, we need to apply structured decomposition
techniques12 to the 9-c-pMMP architecture. We intend to publish on the outcome of that analysis later—it is
expected that the constraints that exist within the two-snapshot mode will prove to be the most interesting.
Finally, we plan to build this system in order to confirm its performance and the effects of misalignment.
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